求x→0时lim[1/x-1/(e^x-1)]的极限
1个回答
展开全部
x→0,lim[1/x-1/(e^x-1)]=lim[(e^x-1-x)/x(e^x-1)]
这个0/0型的,运用罗比达可以得到结果,但是我运用的是等价无穷小和泰勒展开来解题的,
e^x=1+x+x^2/2+……+x^n/n!n->oo
对于本题,展开到二阶即可,因为分母e^x-1~x,在x->0的时候.
所以,极限为:x→0时lim[1/x-1/(e^x-1)]=lim[x^2/2+o(x^2)]/x^2=1/2+0=1/2
这个0/0型的,运用罗比达可以得到结果,但是我运用的是等价无穷小和泰勒展开来解题的,
e^x=1+x+x^2/2+……+x^n/n!n->oo
对于本题,展开到二阶即可,因为分母e^x-1~x,在x->0的时候.
所以,极限为:x→0时lim[1/x-1/(e^x-1)]=lim[x^2/2+o(x^2)]/x^2=1/2+0=1/2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询