如何推导拉格朗日中值定理呢?

 我来答
Dilraba学长
高粉答主

2022-11-03 · 听从你心 爱你所爱 无问西东
Dilraba学长
采纳数:1107 获赞数:411018

向TA提问 私信TA
展开全部

罗尔定理可知。

fa=fb时,存在某点e,使f′e=0。

开始证明拉格朗日。

假设一函数fx。

目标:证明fb-fa=f′e(b-a),即拉格朗日。

假设fx来做成一个毫无意义的函数,fx-(fb-fa)/(b-a)*x,我们也不知道他能干啥,是我们随便写的一个特殊函数,我们令它等于Fx。

这个特殊函数在于,这个a和b,正好满足Fb=Fa,且一定存在这个a和b。

此时就有罗尔定理的前提了。

于是得出有一个e,能让F′e=0(罗尔定理)

即(fx-(fb-fa)/(b-a)*x)′,

上面求导等于f′x-(fb-fa)/(b-a)。

将唯一的x带换成e,并且整个式子等于0。

变成f′e-(fb-fa)/(b-a)=0→

f′e=(fb-fa)/(b-a)→

f′e(b-a)=(fb-fa)。

扩展资料

证明过程

证明:因为函数 f(x) 在闭区间[a,b] 上连续,所以存在最大值与最小值,分别用 M 和 m 表示,分两种情况讨论:

1. 若 M=m,则函数 f(x) 在闭区间 [a,b] 上必为常函数,结论显然成立。

2. 若 M>m,则因为 f(a)=f(b) 使得最大值 M 与最小值 m 至少有一个在 (a,b) 内某点ξ处取得,从而ξ是f(x)的极值点,又条件 f(x) 在开区间 (a,b) 内可导得,f(x) 在 ξ 处取得极值,由费马引理推知:f'(ξ)=0。

另证:若 M>m ,不妨设f(ξ)=M,ξ∈(a,b),由可导条件知,f'(ξ+)<=0,f'(ξ-)>=0,又由极限存在定理知左右极限均为 0,得证。

几何意义

若连续曲线y=f(x) 在区间 [a,b] 上所对应的弧段 AB,除端点外处处具有不垂直于 x 轴的切线,且在弧的两个端点 A,B 处的纵坐标相等,则在弧 AB 上至少有一点 C,使曲线在C点处的切线平行于 x 轴。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
富港检测技术(东莞)有限公司_
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发... 点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式