求和1+2x+3x^2+4x^3+.+100x^99
展开全部
若x=1,s=1+2+...+100=5050
若x≠1,则
令s=1+2x+3x^2+4x^3+...99x^98+100x^99 (1)
则xs=x+2x^2+3x^3+...+99x^99+100x^100 (2)
(1)-(2),得 s-xs=1+x+x^2+...+x^99-100x^100
化简得 (1-x)s=(1-x^100)/(1-x)-100x^100
s=(1-x^100)/[(x-1)^2]+(100x^100)/(x-1)
若x≠1,则
令s=1+2x+3x^2+4x^3+...99x^98+100x^99 (1)
则xs=x+2x^2+3x^3+...+99x^99+100x^100 (2)
(1)-(2),得 s-xs=1+x+x^2+...+x^99-100x^100
化简得 (1-x)s=(1-x^100)/(1-x)-100x^100
s=(1-x^100)/[(x-1)^2]+(100x^100)/(x-1)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询