1个回答
2013-07-17
展开全部
解:由正弦定理(sinA)/a=(sinB)/b=(sinC)/c和条件b^2=ac
得(sinB)^2=sinA*sinC,
cos(A-C)+cosB+cos2B
=cosA*cosC+sinA*sinC-cos(A+C)+(cosB)^2-(sinB)^2
=cosA*cosC-cosA*cosC+sinA*sinC+(cosB)^2
=(sinB)^2+(cosB)^2
=1
得(sinB)^2=sinA*sinC,
cos(A-C)+cosB+cos2B
=cosA*cosC+sinA*sinC-cos(A+C)+(cosB)^2-(sinB)^2
=cosA*cosC-cosA*cosC+sinA*sinC+(cosB)^2
=(sinB)^2+(cosB)^2
=1
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询