已知定义在R上的函数f(x)满足:f(x+y)=f(x)+f(y)+1,当x>0时,f(x)>—1

若f(1)=1,解关于x的不等式:f(x^2+2x)+f(1-x)>4... 若f(1)=1,解关于x的不等式:f(x^2+2x)+f(1-x)>4 展开
体育wo最爱
高粉答主

推荐于2017-10-04 · 说的都是干货,快来关注
知道大有可为答主
回答量:3.8万
采纳率:72%
帮助的人:1.2亿
展开全部
f(x+y)=f(x)+f(y)+1
令x=y=0得到:f(0)=f(0)+f(0)+1
所以,f(0)=-1
已知当x>0时,f(x)>-1=f(0)
所以,在x>0时,f(x)为增函数
令x=y=1,得到:f(2)=2f(1)+1=3
同理,f(3)=f(1+2)=f(1)+f(2)+1=1+3+1=5

f(x^2+2x)+f(1-x)>4
===> f(x^2+2x+1-x)-1>4
===> f(x^2+x+1)>5=f(3)
因为x^2+x+1>0
所以,x^2+x+1>3
===> x^2+x-2>0
===> (x+2)(x-1)>0
===> x<-2,或者x>1
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式