4个回答
展开全部
驻点(Stationary Point)又称为平稳点、稳定点或临界点(Critical Point)是函数的一阶导数为零,即在“这一点”,函数的输出值停止增加或减少。
对于一维函数的图像,驻点的切线平行于x轴。对于二维函数的图像,驻点的切平面平行于xy平面。值得注意的是,一个函数的驻点不一定是这个函数的极值点(考虑到这一点左右一阶导数符号不改变的情况)。
反过来,在某设定区域内,一个函数的极值点也不一定是这个函数的驻点(考虑到边界条件),驻点(红色)与拐点(蓝色),这图像的驻点都是局部极大值或局部极小值。
驻点并不是点,而是和极值点相似,代表着这一点的x值。因此,驻点不一定是极值点,极值点也不一定是驻点。
扩展资料:
1、驻点与拐点区别
“临界点”更为通用:功能的平稳点对应于平行于x轴的投影的图形的临界点。另一方面,平行于y轴的投影图的关键点是导数不被定义的点(更准确地趋向于无穷大)。因此,有些作者将这些预测的关键点称为“关键点”。拐点是导数符号发生变化的点。
2、驻点与极值点区别
可导函数f(x)的极值点一定是它的驻点,不可导的点可以是极值点,但它不是驻点.但反过来,函数的驻点不一定是极值点。
参考资料来源:百度百科——驻点
推荐于2017-12-15
展开全部
驻点:使一阶导数等于0的点,叫驻点。所以驻点是通过原原来函数求导,并使其等于0,解出的x的值。在驻点的左右两侧,函数的增减性发生变化。如果一般的一元二次函数y=ax^2+bx+c(a不等于0)的驻点就是它的顶点。在驻点处,函数能取得极大值,但不一定是最大值。如图中,A、B、C点即为驻点。从图中也见,极大不一定大于极小。极小也不一定小于极大。 拐点:通过函数的二阶导数等于0求出的点。所以求拐点,先求函数的二阶导数,并使其等于0,求出x的值,即为拐点。在拐点两侧,函数图象的凹凸不同。如图中D、E两点即为拐点。 [img] http://dl.zhishi.sina.com.cn/upload/94/84/17/1093948417.530589.bmp[/img]
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2013-07-23
展开全部
驻点是使各一阶偏导数都为0的点,所以一阶导数就是用来求驻点的公式:f'(x)=0
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询