已知函数y=loga²(3-ax)(a≠0且a≠±1)在[0,2]上是减函数,则实数a的取值范围是
2个回答
展开全部
解:∵ a ² ≥ 0
又∵ a ≠ 0 ,a ≠ ± 1
∴ ① 当 丨a丨 > 1 时,y = log (a ²)(x)是增函数
∵ y = log(a ²)(3 - a x)是减函数
∴ m = 3 - a x 是减函数
∴ m = - a x + 3
∴ a >1
- a < 0
3 - 2 a > 0
∴ 3 / 2 > a > 1
② 当 0 < 丨a丨 < 1 时,则:y = log (a ²)(x)是减函数
∵ y = log(a ²)(3 - a x)是减函数
∴ m = 3 - a x 是增函数
∴ m = - a x + 3
∴ - a > 0
a < 0
0 < 丨a丨< 1
∴ - 1 < a < 0
综上,1 < a < 3 / 2 或 - 1 < a < 0
又∵ a ≠ 0 ,a ≠ ± 1
∴ ① 当 丨a丨 > 1 时,y = log (a ²)(x)是增函数
∵ y = log(a ²)(3 - a x)是减函数
∴ m = 3 - a x 是减函数
∴ m = - a x + 3
∴ a >1
- a < 0
3 - 2 a > 0
∴ 3 / 2 > a > 1
② 当 0 < 丨a丨 < 1 时,则:y = log (a ²)(x)是减函数
∵ y = log(a ²)(3 - a x)是减函数
∴ m = 3 - a x 是增函数
∴ m = - a x + 3
∴ - a > 0
a < 0
0 < 丨a丨< 1
∴ - 1 < a < 0
综上,1 < a < 3 / 2 或 - 1 < a < 0
展开全部
y=loga²f(x) (f(x)>0)
当|a|<1时是单调递减函数,此时如果f(x)是单调递增,则 y 是关于x的单调递减函数,如果f(x)是单调递减,则 y 是关于x的单调递增函数。
当|a|>1时是单调递增函数,此时如果f(x)是单调递增,则 y 是关于x的单调递增函数,如果f(x)是单调递减,则 y 是关于x的单调递减函数。
在题中,f(x)=3-ax, 易知当-1<a<0 / a<-1时,f(x)为单调递增,同理1>a>0 / a>1时为单调递减。
综上所述,只有-1<a<0 以及 a>1 满足条件 。
又因为f(x)>0,在-1<a<0、0<x<2时,f(x)>3 满足条件。
在a>1、0<x<2时,(3 -2a) > 0 得 a<3/2
∴ -1<a<0 1<a<3/2
当|a|<1时是单调递减函数,此时如果f(x)是单调递增,则 y 是关于x的单调递减函数,如果f(x)是单调递减,则 y 是关于x的单调递增函数。
当|a|>1时是单调递增函数,此时如果f(x)是单调递增,则 y 是关于x的单调递增函数,如果f(x)是单调递减,则 y 是关于x的单调递减函数。
在题中,f(x)=3-ax, 易知当-1<a<0 / a<-1时,f(x)为单调递增,同理1>a>0 / a>1时为单调递减。
综上所述,只有-1<a<0 以及 a>1 满足条件 。
又因为f(x)>0,在-1<a<0、0<x<2时,f(x)>3 满足条件。
在a>1、0<x<2时,(3 -2a) > 0 得 a<3/2
∴ -1<a<0 1<a<3/2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询