已知abc均为正数,证明:a^2+b^2+c^2+(1/a+1/b+1/c)^2>=6根号3,并确定abc为何值,等号成立?

匿名用户
2013-07-28
展开全部
因为a,b,c均为正数,由基本不等式得a2+b2≥2abb2+c2≥2bcc2+a2≥2ac
所以a2+b2+c2≥ab+bc+ac①
同理1a2+1b2+1c2≥1ab+1bc+1ac②(6分)
故a2+b2+c2+(1a+1b+1c)2③
≥ab+bc+ac+31ab+31bc+31ac
≥63所以原不等式成立.(8分)
当且仅当a=b=c时,①式和②式等号成立,当且仅当a=b=c,(ab)2=(bc)2=(ac)2=3时,③式等号成立.
即当且仅当a=b=c=314时,原式等号成立.(10分)
Eorslon
2014-02-23
知道答主
回答量:1
采纳率:0%
帮助的人:1399
展开全部
a^2+b^2+c^2+(1/a+1/b+1/c)^2 = a^2+b^2+c^2 + 1/a^2 + 1/b^2+1/c^2 + 2/ab+2/bc+2/ca
=a^2/3 + 1/a^2 + b^2/3 + 1/b^2 + c^2/3 + 1/c^2
+ a^2/3 + 2/ab + b^2/3 + b^2/3 + 2/bc + c^2/3 + c^2/3 + 2/ca + a^2/3
a^2/3 + 1/a^2 >= 2 * √(a^2/3 * 1/a^2)=2/√3
b^2/3 + 1/b^2 >= 2/√3
c^2/3 + 1/c^2 >= 2/√3
a^2/3 + 2/ab + b^2/3 =a^2/3 + 1/ab + 1/ab + b^2/3 >= 4 * 4次根号(1/9) = 4/√3
b^2/3 + 2/bc + c^2/3 >=4/√3
c^2/3 + 2/ca + a^2/3 >=4/√3
所有加起来就是6√3
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
2013-07-28
展开全部
abc地位相同,所以a=b=c时,等号成立
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式