展开全部
设t = (abc)^(1/3) > 0.
由1 = 2abc+ab+bc+ca
≥ 2abc+3·(ab·bc·ca)^(1/3) (均值不等式)
= 2abc+3·(abc)^(2/3)
= 2t³+3t²,
有(2t-1)(t+1)² = 2t³+3t²-1 ≤ 0, 即t ≤ 1/2.
于是6t+1-32t³ = (1-2t)(1+4t)² ≥ 0,
即得6(abc)^(1/3)+1 ≥ 32abc.
再由均值不等式得2(a+b+c)+1 ≥ 6(abc)^(1/3)+1 ≥ 32abc.
由1 = 2abc+ab+bc+ca
≥ 2abc+3·(ab·bc·ca)^(1/3) (均值不等式)
= 2abc+3·(abc)^(2/3)
= 2t³+3t²,
有(2t-1)(t+1)² = 2t³+3t²-1 ≤ 0, 即t ≤ 1/2.
于是6t+1-32t³ = (1-2t)(1+4t)² ≥ 0,
即得6(abc)^(1/3)+1 ≥ 32abc.
再由均值不等式得2(a+b+c)+1 ≥ 6(abc)^(1/3)+1 ≥ 32abc.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询