已知a,b,c为正数,求证:√(a²+b²)+√(b²+c²)√(c²+a²)≥√2(a+b+c)

爱问知识人0417
2013-08-02 · TA获得超过8900个赞
知道大有可为答主
回答量:1458
采纳率:84%
帮助的人:349万
展开全部
当a+b+c>0时,由于两边都为正数
要证:√(a²+b²)+√(b²+c²)√(c²+a²)≥√2(a+b+c)
即证(√a²+b²+√b²+c²+√c²+a²)^2≥2(a+b+c)^2
即2√a²+b²*√b²+c²+2√a²+b²*√c²+a²+2√c²+b²*√c²+a²≥2ab+2ac+2bc
明显√a²+b²>=a,√c²+b²>=b,√a²+c²>=c
所以2√a²+b²*√b²+c²+2√a²+b²*√c²+a²+2√c²+b²*√c²+a²≥2ab+2ac+2bc成立
原题得证。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式