已知等差数列{a¬n}中, 首项a1=1,公差d为整数,且满足a1+3<a3,a2+5>a4.数列{bn}满足bn=1/
已知等差数列{an}中,首项a1=1,公差d为整数,且满足a1+3<a3,a2+5>a4.数列{bn}满足bn=1/an*an+1,其前n项...
已知等差数列{an}中, 首项a1=1,公差d为整数,且满足a1+3<a3,a2+5>a4.数列{bn}满足bn=1/ an* an+1,其前n项和为Sn
(1)求数列{an}的通项公式an
(2) 求数列{bn}前n项和为Sn 展开
(1)求数列{an}的通项公式an
(2) 求数列{bn}前n项和为Sn 展开
1个回答
展开全部
a(n) = 1 + (n-1)d,
a(1)+3 = 4 < a(3) = 1 + 2d, d > 3/2.
a(2)+5=1+d+5>a(4)=1+3d, d < 5/2.
3/2 < d < 5/2. d = 2.
a(n) = 1 + 2(n-1) = 2n-1.
b(n) = 1/[a(n)a(n+1)] = 1/[(2n-1)(2n+1)] = (1/2)[1/(2n-1) - 1/(2n+1)],
s(n) = b(1)+b(2)+...+b(n-1)+b(n)
= (1/2)[1/1 - 1/3 + 1/3-1/5 + ... + 1/(2n-3) - 1/(2n-1) + 1/(2n-1) - 1/(2n+1)]
= (1/2)[ 1 - 1/(2n+1)]
= n/(2n+1)
a(1)+3 = 4 < a(3) = 1 + 2d, d > 3/2.
a(2)+5=1+d+5>a(4)=1+3d, d < 5/2.
3/2 < d < 5/2. d = 2.
a(n) = 1 + 2(n-1) = 2n-1.
b(n) = 1/[a(n)a(n+1)] = 1/[(2n-1)(2n+1)] = (1/2)[1/(2n-1) - 1/(2n+1)],
s(n) = b(1)+b(2)+...+b(n-1)+b(n)
= (1/2)[1/1 - 1/3 + 1/3-1/5 + ... + 1/(2n-3) - 1/(2n-1) + 1/(2n-1) - 1/(2n+1)]
= (1/2)[ 1 - 1/(2n+1)]
= n/(2n+1)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询