求初三数学二次函数所有公式。

 我来答
匿名用户
2013-08-14
展开全部
一般式:y=ax^2;+bx+c(a≠0,a、b、c为常数),则称y为x的二次函数。
顶点式:y=a(x-h)�0�5+k或y=a(x+m)�0�5+k (两个式子实质一样,但初中课本上都是第一个式子)
交点式(与x轴):y=a(x-x1)(x-x2)
重要概念:(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下。IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大。)
二次函数表达式的右边通常为二次。
x是自变量,y是x的二次函数
x1,x2=[-b±根号下(b^2-4ac)]/2a(即一元二次方程求根公式)
[编辑本段]二次函数的图像
在平面直角坐标系中作出二次函数y=x的平方;的图像,
可以看出,二次函数的图像是一条永无止境的抛物线。不同的二次函数图像
[编辑本段]抛物线的性质
1.抛物线是轴对称图形。对称轴为直线x = -b/2a。
对称轴与抛物线唯一的交点为抛物线的顶点P。
特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)
2.抛物线有一个顶点P,坐标为P ( -b/2a ,(4ac-b�0�5)/4a )
当-b/2a=0时,P在y轴上;当Δ= b�0�5-4ac=0时,P在x轴上。
3.二次项系数a决定抛物线的开口方向和大小。
当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。
|a|越大,则抛物线的开口越小。
4.一次项系数b和二次项系数a共同决定对称轴的位置。
当a与b同号时(即ab>0),对称轴在y轴左; 因为若对称轴在左边则对称轴小于0,也就是-b/2a<0,所以b/2a要大于0,所以a、b要同号
当a与b异号时(即ab<0),对称轴在y轴右。因为对称轴在右边则对称轴要大于0,也就是-b/2a>0,所以b/2a要小于0,所以a、b要异号
可简单记忆为左同右异即当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右。
事实上,b有其自身的几何意义:抛物线与y轴的交点处的该抛物线切线的函数解析式(一次函数)的斜率k的值。可通过对二次函数求导得到。
5.常数项c决定抛物线与y轴交点。
抛物线与y轴交于(0,c)
6.抛物线与x轴交点个数
Δ= b�0�5-4ac>0时,抛物线与x轴有2个交点。
Δ= b�0�5-4ac=0时,抛物线与x轴有1个交点。
_______
Δ= b�0�5-4ac<0时,抛物线与x轴没有交点。X的取值是虚数(x= -b±√b�0�5-4ac 的值的相反数,乘上虚数i,整个式子除以2a)
当a>0时,函数在x= -b/2a处取得最小值f(-b/2a)=4ac-b�0�5/4a;在{x|x<-b/2a}上是减函数,在{x|x>-b/2a}上是增函数;抛物线的开口向上;函数的值域是{y|y≥4ac-b^2;/4a}相反不变
当b=0时,抛物线的对称轴是y轴,这时,函数是偶函数,解析式变形为y=ax�0�5+c(a≠0)
7.定义域:R
值域:(对应解析式,且只讨论a大于0的情况,a小于0的情况请读者自行推断)①[(4ac-b�0�5)/4a,正无穷);②[t,正无穷)
奇偶性:偶函数
周期性:无
解析式:
①y=ax�0�5+bx+c[一般式]
⑴a≠0
⑵a>0,则抛物线开口朝上;a<0,则抛物线开口朝下;
⑶极值点:(-b/2a,(4ac-b�0�5)/4a);
⑷Δ=b�0�5-4ac,
Δ>0,图象与x轴交于两点:
([-b-√Δ]/2a,0)和([-b+√Δ]/2a,0);
Δ=0,图象与x轴交于一点:
(-b/2a,0);
Δ<0,图象与x轴无交点;
②y=a(x-h)�0�5+t[配方式]
此时,对应极值点为(h,t),其中h=-b/2a,t=(4ac-b�0�5)/4a);
③y=a(x-x1)(x-x2)[交点式]
a≠0,此时,x1、x2即为函数与X轴的两个交点,将X、Y代入即可求出解析式(一般与一元二次方程连用)。
[编辑本段]二次函数与一元二次方程
特别地,二次函数(以下称函数)y=ax^2+bx+c,
当y=0时,二次函数为关于x的一元二次方程(以下称方程),
即ax^2+bx+c=0
此时,函数图像与x轴有无交点即方程有无实数根。
函数与x轴交点的横坐标即为方程的根。
1.二次函数y=ax^2;,y=a(x-h)^2;,y=a(x-h)^2; +k,y=ax^2+bx+c(各式中,a≠0)的图象形状相同,只是位置不同,它们的顶点坐标及对称轴如下表:
解析式
y=ax^2;
y=ax^2;+K
y=a(x-h)^2;
y=a(x-h)^2+k
y=ax^2+bx+c

顶点坐标
(0,0)
(0,K)
(h,0)
(h,k)
(-b/2a,sqrt[4ac-b^2;]/4a)

对 称 轴
x=0
x=0
x=h
x=h
x=-b/2a

当h>0时,y=a(x-h)^2;的图象可由抛物线y=ax^2;向右平行移动h个单位得到,
当h<0时,则向左平行移动|h|个单位得到.
当h>0,k>0时,将抛物线y=ax^2;向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)^2+k的图象;
当h>0,k<0时,将抛物线y=ax^2;向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)^2-k的图象;
当h<0,k>0时,将抛物线向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x+h)�0�5+k的图象;
当h<0,k<0时,将抛物线向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)�0�5+k的图象;
因此,研究抛物线 y=ax^2+bx+c(a≠0)的图象,通过配方,将一般式化为y=a(x-h)^2;+k的形式,可确定其顶点坐标、对称轴,抛物线的大体位置就很清楚了.这给画图象提供了方便.
2.抛物线y=ax^2+bx+c(a≠0)的图象:当a>0时,开口向上,当a<0时开口向下,对称轴是直线x=-b/2a,顶点坐标是(-b/2a,[4ac-b^2;]/4a).
3.抛物线y=ax^2+bx+c(a≠0),若a>0,当x ≤ -b/2a时,y随x的增大而减小;当x ≥ -b/2a时,y随x的增大而增大.若a<0,当x ≤ -b/2a时,y随x的增大而增大;当x ≥ -b/2a时,y随x的增大而减小.
4.抛物线y=ax^2+bx+c的图象与坐标轴的交点:
(1)图象与y轴一定相交,交点坐标为(0,c);
(2)当△=b^2-4ac>0,图象与x轴交于两点A(x�6�9,0)和B(x�6�0,0),其中的x1,x2是一元二次方程ax^2+bx+c=0
(a≠0)的两根.这两点间的距离AB=|x�6�0-x�6�9| 另外,抛物线上任何一对对称点的距离可以由|2×(-b/2a)-A |(A为其中一点的横坐标)
当△=0.图象与x轴只有一个交点;
当△<0.图象与x轴没有交点.当a>0时,图象落在x轴的上方,x为任何实数时,都有y>0;当a<0时,图象落在x轴的下方,x为任何实数时,都有y<0.
5.抛物线y=ax^2+bx+c的最值:如果a>0(a<0),则当x= -b/2a时,y最小(大)值=(4ac-b^2)/4a.
顶点的横坐标,是取得最值时的自变量值,顶点的纵坐标,是最值的取值.
6.用待定系数法求二次函数的解析式
(1)当题给条件为已知图象经过三个已知点或已知x、y的三对对应值时,可设解析式为一般形式:
y=ax^2+bx+c(a≠0).
(2)当题给条件为已知图象的顶点坐标或对称轴或极大(小)值时,可设解析式为顶点式:y=a(x-h)^2+k(a≠0).
(3)当题给条件为已知图象与x轴的两个交点坐标时,可设解析式为两根式:y=a(x-x�6�9)(x-x�6�0)(a≠0).
7.二次函数知识很容易与其它知识综合应用,而形成较为复杂的综合题目。因此,以二次函数知识为主的综合性题目是中考的热点考题,往往以大题形式出现.
匿名用户
2013-08-14
展开全部
2.4二次函数y=ax2+bx+c的图象和性质(3)课型 新授 案序 8学习目标:1、体会建立二次函数对称轴和顶点坐标公式的必要性.2、能够利用二次函数的对称轴和顶点坐标公式解决问题.3、通过学生合作交流来解决问题,培养学生的合作交流能力.学习重点:运用二次函数的对称轴和顶点坐标公式解决实际问题.学习难点:把数学问题与实际问题相联系的过程.学习过程:一、学前准备(学生独立完成)1、抛物线y= (x+3)2的顶点坐标是______.2、将抛物线y=3x2向上平移3个单位后,所得抛物线的顶点坐标是______.3、抛物线y=- x2+1,y=- (x+1)2与抛物线y=- (x2+1)的___相同,__不同.二、探究活动(一)独立思考并合作探究探索二次函数y=ax2+bx+c的对称轴和顶点坐标例:求二次函数y=ax2+bx+c的对称轴和顶点坐标.1、二次函数y=a(x-h)2+k的对称轴和顶点坐标分别是什么?2、交流怎样求二次函数y=ax2+bx+c的对称轴和顶点坐标.点拨:用配方法将ax2+bx+c转化成a(x-h)2+k的形式即可。 3、学生独立完成后交流答案,并找一人板演展示。解:把y=ax2+bx+c的右边配方,得y=ax2+bx+c=a(x2+ )=a[x2+2· x+( )2+ ]=a(x+ )2+ .对称轴为x=- ,顶点燃坐标为(- , )巩固练习:P60随堂 (二)实际应用:P58做一做,有关桥梁问题 学生独立思考后教师点拨,分析:因为两条钢缆都是抛物线形状,且开口向上.要求钢缆的最低点到桥面的距离就是要求抛物线的最小值.又因为左右两条抛物线关于y轴对称,所以它们的顶点也关于y轴对称,两条钢缆最低点之间的距离就是两条抛物线顶点的横坐标绝对值之和或其中一条抛物线顶点横坐标绝对值的2倍.已知二次函数的形式是一般形式,所以应先进行配方化为y=a(x-h)2+k的形式,即顶点式. 解:y=0.0225x2+0.9x+10 =0.0225(x2+40x+ ) 二0.0225(x2+40x+400-400+ )=0.0225(x+20)2+1. ∴对称轴为x=-20.顶点坐标为(-20,1).(1)钢缆的最低点到桥面的距离是1米.(2)两条钢缆最低点之间的距离是2×20=40米. 三.学习体会1.本节课你有哪些收获?你还有哪些疑问? 2.你认为老师上课过程中还有哪些须改进的地方? 四.自我测试1、确定下列二次函数图象的开口方向、对称轴和顶点坐标。(1)y=2x2-4x-1 (2)y=-3(x+3)(x+9) 2、对于二次函数y=ax2+bx+a,如果2a+b=0,那么此函数的顶点坐标是 对称轴方程是 3、当一枚火箭被竖直向上发射时,它的高度h(m)与时间t(s)之间可以用公式h=-5t2+150t+10表示。经过多长时间,火箭到达最高点?最高点的高度是多少?
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
2013-08-14
展开全部
y=ax方+bx+c一般式y=ax方简单式y=a(x-h)方+k顶点式y=a(x-x1)(x-x2)交点式
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
2013-08-14
展开全部
表达式:y=ax^2y=ax^2+cy=ax^2+bxy=ax^2+bx+c顶点式:y=(x+h)^2y=a(x+h)^2y=(x+h)^2+cy=a(x+h)^2+c
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式