在数列an中,a1=1,a(n+1)=(1+1/n)an+(n+1)/2^n
在数列an中,a1=1,a(n+1)=(1+1/n)an+(n+1)/2^n(I)设bn=an/n,求数列bn的通项公式(II)求数列an的前项和...
在数列an中,a1=1,a(n+1)=(1+1/n)an+(n+1)/2^n
(I)设bn=an/n,求数列bn的通项公式
(II)求数列an的前项和 展开
(I)设bn=an/n,求数列bn的通项公式
(II)求数列an的前项和 展开
2个回答
展开全部
(1)
a(n+1)=(1+1/n)an+(n+1)/2^n
na(n+1) = (n+1)an + n(n+1)/2^n
a(n+1)/(n+1) -an/n = 1/2^(n)
an/n - a(n-1)/(n-1) = 1/2^(n-1)
an/n - a1/1 = 1/2^1+1/2^2+...+1/2^(n-1)
an = 1/2^0+1/2^1+1/2^2+...+1/2^(n-1)
= 2[1- 2^(-n)]
bn = an/n = 2(1 -2^(-n))/n
(2)
an = 2[1- 2^(-n)]
Sn =a1+a2+...+an
= 2[n + (1- 2^(-n))]
= 2[(n+1) - 2^(-n)]
a(n+1)=(1+1/n)an+(n+1)/2^n
na(n+1) = (n+1)an + n(n+1)/2^n
a(n+1)/(n+1) -an/n = 1/2^(n)
an/n - a(n-1)/(n-1) = 1/2^(n-1)
an/n - a1/1 = 1/2^1+1/2^2+...+1/2^(n-1)
an = 1/2^0+1/2^1+1/2^2+...+1/2^(n-1)
= 2[1- 2^(-n)]
bn = an/n = 2(1 -2^(-n))/n
(2)
an = 2[1- 2^(-n)]
Sn =a1+a2+...+an
= 2[n + (1- 2^(-n))]
= 2[(n+1) - 2^(-n)]
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询