求证:a,b是正整数,2a^2+a=3b^2+b,则a-b和2a+2b+1都是完全平方数。
1个回答
展开全部
首先(2a+2b+1)(a-b)=2a²+a-(2b²+b)=b²,(3a+3b+1)(a-b)=3a²+a-(3b²+b)=a²。设2a+2b+1与3a+3b+1的最大公因数为c,则c能整除3a+3b+1-(2a+2b+1)=a+b,那么c能整除2(a+b),从而
c能整除2a+2b+1-2(a+b)=1,所以c=1。假设a-b不是平方数,则必存在质数p,使得p在a-b的因数分解中次数为奇数,则p能整除2a+2b+1,否则(2a+2b+1)(a-b)=b²不为平方数,同理p也能整除3a+3b+1,这与2a+2b+1与3a+3b+1互素矛盾,故假设不成立,a-b是完全平方数,那么
2a+2b+1=b²/(a-b)也为平方数。
c能整除2a+2b+1-2(a+b)=1,所以c=1。假设a-b不是平方数,则必存在质数p,使得p在a-b的因数分解中次数为奇数,则p能整除2a+2b+1,否则(2a+2b+1)(a-b)=b²不为平方数,同理p也能整除3a+3b+1,这与2a+2b+1与3a+3b+1互素矛盾,故假设不成立,a-b是完全平方数,那么
2a+2b+1=b²/(a-b)也为平方数。
追问
看不懂,有简单点的原创不,别在百度上抄
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询