如图,P是等边三角形ABC内的一点,连结PA,PB,PC,以BP为边变作∠PBQ=60°,BQ=BP,连结CQ.
【1】观察并猜想AP与CQ之间的大小关系,并证明猜想【2】若PA∶PB∶PC=3∶4∶5,连结PQ,试判断△PQC的形状,说明理由...
【1】观察并猜想AP与CQ之间的大小关系,并证明猜想
【2】若PA∶PB∶PC=3∶4∶5,连结PQ,试判断△PQC的形状,说明理由 展开
【2】若PA∶PB∶PC=3∶4∶5,连结PQ,试判断△PQC的形状,说明理由 展开
1个回答
展开全部
解:(1)猜想:AP=CQ,
证明:∵∠ABP+∠PBC=60°,∠QBC+∠PBC=60°,
∴∠ABP=∠QBC.
又AB=BC,BQ=BP,
∴△ABP≌△CBQ,
∴AP=CQ;
(2)由PA:PB:PC=3:4:5,
可设PA=3a,PB=4a,PC=5a,
连接PQ,在△PBQ中
由于PB=BQ=4a,且∠PBQ=60°,
∴△PBQ为正三角形.
∴PQ=4a.
于是在△PQC中
∵PQ^2+QC^2=16a^2+9a^2=25a^2=PC^2
∴△PQC是直角三角形.
证明:∵∠ABP+∠PBC=60°,∠QBC+∠PBC=60°,
∴∠ABP=∠QBC.
又AB=BC,BQ=BP,
∴△ABP≌△CBQ,
∴AP=CQ;
(2)由PA:PB:PC=3:4:5,
可设PA=3a,PB=4a,PC=5a,
连接PQ,在△PBQ中
由于PB=BQ=4a,且∠PBQ=60°,
∴△PBQ为正三角形.
∴PQ=4a.
于是在△PQC中
∵PQ^2+QC^2=16a^2+9a^2=25a^2=PC^2
∴△PQC是直角三角形.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询