2013-08-21
展开全部
离子注入是离子参杂的一种。
随着VLSI器件的发展,到了70年代,器件尺寸不断减小,结深降到1um以下,扩散技术有些力不从心。在这种情况下,离子注入技术比较好的发挥其优势。目前,结深小于1um的平面工艺,基本都采用离子注入技术完成掺杂。离子注入技术已经成为VLSI生产中不可缺少的掺杂工艺。
………离子注入具有如下的特点
①可以在较低温度下(400℃)进行,避免高温处理。②通过控制注入时的电学条件(电流、电压)可以精确控制浓度和结深,更好的实现对杂质分布形状的控制。而且杂质浓度不受材料固溶度的限制。③可选出一种元素进行注入,避免混入其他杂质。④可以在较大面积上形成薄而均匀的掺杂层。同一晶片上杂质不均匀性优于1%,且横向掺杂比扩散小的多。⑤控制离子束的扫描区域,可实现选择注入并进而发展为一种无掩模掺杂技术。
…………离子注入技术应用领域
2.1 离子注入应用于金属材料改性
离子注入应用于金属材料改性,是在经过热处理或表面镀膜工艺的金属材料上,注入一定剂量和能量的离子到金属材料表面,改变材料表层的化学成份、物理结构和相态,从而改变材料的力学性能、化学性能和物理性能。具体地说,离子注入能改变材料的声学、光学和超导性能,提高材料的工作硬度、耐磨损性、抗腐蚀性和抗氧化性,最终延长材料工作寿命。离子注入提高工模具的耐磨性能、金属样品的抗疲劳性以及金属表面耐腐蚀性
2 离子注入机应用于掺杂工艺
在半导体工艺技术中,离子注入具有高精度的剂量均匀性和重复性,可以获得理想的掺杂浓度和集成度,使电路的集成、速度、成品率和寿命大为提高,成本及功耗降低。这一点不同于化学气相淀积,化学气相淀积要想获得理想的参数,如膜厚和密度,需要调整设备设定参数,如温度和气流速率,是一个复杂过程。上个世纪70年代要处理简单一个的n型金属氧化物半导体可能只需6~8次注入,而现代嵌入记忆功能的CMOS集成电路可能需要注入达35次。
技术应用需要剂量和能量跨越几个等级,多数注入情况为:每个盒子的边界接近,个别工艺因设计差异有所变化。随着能量降低,离子剂量通常也会下降。具备经济产出的最高离子注入剂量是1016/cm2,相当于20个原子层。
3 在SOI技术中的应用
由于SOI技术(Silicon-on-Insulation)在亚微米ULSI低压低功耗电路和抗辐照电路等方面日益成熟的应用,人们对SOI制备技术进行了广泛探索。
1966年Watanabe和Tooi首先报道通过O+注入形成SILF表面的Si氧化物来进行器件间的绝缘隔离的可能性。1978年,NTT报道用这项技术研制出高速、低功耗的CMOS链振荡电路后,这种注O+技术成为众人注目的新技术。从而注氧隔离技术即SIMOX就成了众多SOI制备技术中最有前途的大规模集成电路生产技术。1983年NTT成功运用了SIMOX技术大批生产了COMSBSH集成电路;1986年NTT还研制了抗辐射器件。这一切,使得NTT联合EATON公司共同开发了强流氧离子注入机(束流达100mA),之后EATON公司生产了一系列NV-200超强流氧离子注入机,后来Ibis公司也研制了Ibis-1000超强流氧离子注入。从此SIMOX技术进入了大规模生产年代。到了上世纪90年代后期,人们在对SIMOX材料的广泛应用进行研究的同时,也发现了注氧形成的SOI材料存在一些难以克服的缺点,如硅岛、缺陷,顶部硅层和氧化层的厚度不均匀等,从而导致了人们开始着眼于注氢和硅片键合技术相结合的智能剥离技术即SMART CUT技术的研制,上世纪90年代末期,H+离子注入成了新的热门话题。目前虽无专门的H+离子注入机,但随着SMART CUT工艺日趋成熟,不久将会出现专门的H+离子注入机。
除了半导体生产行业外,离子注入技术也广泛应用于金属、陶瓷、玻璃、复合物、聚合物、矿物以及植物种子改良上。
随着VLSI器件的发展,到了70年代,器件尺寸不断减小,结深降到1um以下,扩散技术有些力不从心。在这种情况下,离子注入技术比较好的发挥其优势。目前,结深小于1um的平面工艺,基本都采用离子注入技术完成掺杂。离子注入技术已经成为VLSI生产中不可缺少的掺杂工艺。
………离子注入具有如下的特点
①可以在较低温度下(400℃)进行,避免高温处理。②通过控制注入时的电学条件(电流、电压)可以精确控制浓度和结深,更好的实现对杂质分布形状的控制。而且杂质浓度不受材料固溶度的限制。③可选出一种元素进行注入,避免混入其他杂质。④可以在较大面积上形成薄而均匀的掺杂层。同一晶片上杂质不均匀性优于1%,且横向掺杂比扩散小的多。⑤控制离子束的扫描区域,可实现选择注入并进而发展为一种无掩模掺杂技术。
…………离子注入技术应用领域
2.1 离子注入应用于金属材料改性
离子注入应用于金属材料改性,是在经过热处理或表面镀膜工艺的金属材料上,注入一定剂量和能量的离子到金属材料表面,改变材料表层的化学成份、物理结构和相态,从而改变材料的力学性能、化学性能和物理性能。具体地说,离子注入能改变材料的声学、光学和超导性能,提高材料的工作硬度、耐磨损性、抗腐蚀性和抗氧化性,最终延长材料工作寿命。离子注入提高工模具的耐磨性能、金属样品的抗疲劳性以及金属表面耐腐蚀性
2 离子注入机应用于掺杂工艺
在半导体工艺技术中,离子注入具有高精度的剂量均匀性和重复性,可以获得理想的掺杂浓度和集成度,使电路的集成、速度、成品率和寿命大为提高,成本及功耗降低。这一点不同于化学气相淀积,化学气相淀积要想获得理想的参数,如膜厚和密度,需要调整设备设定参数,如温度和气流速率,是一个复杂过程。上个世纪70年代要处理简单一个的n型金属氧化物半导体可能只需6~8次注入,而现代嵌入记忆功能的CMOS集成电路可能需要注入达35次。
技术应用需要剂量和能量跨越几个等级,多数注入情况为:每个盒子的边界接近,个别工艺因设计差异有所变化。随着能量降低,离子剂量通常也会下降。具备经济产出的最高离子注入剂量是1016/cm2,相当于20个原子层。
3 在SOI技术中的应用
由于SOI技术(Silicon-on-Insulation)在亚微米ULSI低压低功耗电路和抗辐照电路等方面日益成熟的应用,人们对SOI制备技术进行了广泛探索。
1966年Watanabe和Tooi首先报道通过O+注入形成SILF表面的Si氧化物来进行器件间的绝缘隔离的可能性。1978年,NTT报道用这项技术研制出高速、低功耗的CMOS链振荡电路后,这种注O+技术成为众人注目的新技术。从而注氧隔离技术即SIMOX就成了众多SOI制备技术中最有前途的大规模集成电路生产技术。1983年NTT成功运用了SIMOX技术大批生产了COMSBSH集成电路;1986年NTT还研制了抗辐射器件。这一切,使得NTT联合EATON公司共同开发了强流氧离子注入机(束流达100mA),之后EATON公司生产了一系列NV-200超强流氧离子注入机,后来Ibis公司也研制了Ibis-1000超强流氧离子注入。从此SIMOX技术进入了大规模生产年代。到了上世纪90年代后期,人们在对SIMOX材料的广泛应用进行研究的同时,也发现了注氧形成的SOI材料存在一些难以克服的缺点,如硅岛、缺陷,顶部硅层和氧化层的厚度不均匀等,从而导致了人们开始着眼于注氢和硅片键合技术相结合的智能剥离技术即SMART CUT技术的研制,上世纪90年代末期,H+离子注入成了新的热门话题。目前虽无专门的H+离子注入机,但随着SMART CUT工艺日趋成熟,不久将会出现专门的H+离子注入机。
除了半导体生产行业外,离子注入技术也广泛应用于金属、陶瓷、玻璃、复合物、聚合物、矿物以及植物种子改良上。
国初科技(厦门)有限公司
2023-06-12 广告
2023-06-12 广告
国初科技在溶剂回收中有丰富的应用经验,是一家以新型分离技术为核心,致力于分离纯化技术推广应用的高科技企业,可根据客户的工艺要求研究开发适合其特定分离技术要求的膜分离技术与设备,更多均相催化剂浓缩技术详情及应用场合,欢迎来电咨询。TEL:05...
点击进入详情页
本回答由国初科技(厦门)有限公司提供
展开全部
离子掺杂应该就是通过离子注入工艺来实现的包括施主杂质或受主杂质的掺杂,掺杂方式还有扩散掺杂,不过精确度不高而且掺杂时间过长,大部分的半导体或面板等行业都是离子注入方式。
离子注入的优点有1.纯度高:离子是通过磁分析器选出来的;2.均匀度好:同一平面均匀度一般可保证在±3%;3.能够精确控制注入剂量和深度;4.温度较低,不会发生热缺陷;5.能够利用PR胶或金属作为掩膜板进行选择性区域注入。等等
缺点:很深的注入不能实现;注入后会对半导体晶格产生损伤,但可以通过退火来修复。
用途:集成电路对半导体电学特性的控制,金属的改性等等
离子注入的优点有1.纯度高:离子是通过磁分析器选出来的;2.均匀度好:同一平面均匀度一般可保证在±3%;3.能够精确控制注入剂量和深度;4.温度较低,不会发生热缺陷;5.能够利用PR胶或金属作为掩膜板进行选择性区域注入。等等
缺点:很深的注入不能实现;注入后会对半导体晶格产生损伤,但可以通过退火来修复。
用途:集成电路对半导体电学特性的控制,金属的改性等等
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
离子注入是离子参杂的一种。
随着VLSI器件的发展,到了70年代,器件尺寸不断减小,结深降到1um以下,扩散技术有些力不从心。在这种情况下,离子注入技术比较好的发挥其优势。目前,结深小于1um的平面工艺,基本都采用离子注入技术完成掺杂。离子注入技术已经成为VLSI生产中不可缺少的掺杂工艺。
离子注入具有如下的特点:
①可以在较低温度下(400℃)进行,避免高温处理;
②通过控制注入时的电学条件(电流、电压)可以精确控制浓度和结深,更好的实现对杂质分布形状的控制。而且杂质浓度不受材料固溶度的限制;
③可选出一种元素进行注入,避免混入其他杂质;
④可以在较大面积上形成薄而均匀的掺杂层。同一晶片上杂质不均匀性优于1%,且横向掺杂比扩散小的多;
⑤控制离子束的扫描区域,可实现选择注入并进而发展为一种无掩模掺杂技术。
随着VLSI器件的发展,到了70年代,器件尺寸不断减小,结深降到1um以下,扩散技术有些力不从心。在这种情况下,离子注入技术比较好的发挥其优势。目前,结深小于1um的平面工艺,基本都采用离子注入技术完成掺杂。离子注入技术已经成为VLSI生产中不可缺少的掺杂工艺。
离子注入具有如下的特点:
①可以在较低温度下(400℃)进行,避免高温处理;
②通过控制注入时的电学条件(电流、电压)可以精确控制浓度和结深,更好的实现对杂质分布形状的控制。而且杂质浓度不受材料固溶度的限制;
③可选出一种元素进行注入,避免混入其他杂质;
④可以在较大面积上形成薄而均匀的掺杂层。同一晶片上杂质不均匀性优于1%,且横向掺杂比扩散小的多;
⑤控制离子束的扫描区域,可实现选择注入并进而发展为一种无掩模掺杂技术。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2013-08-21
展开全部
什么是掺杂半导体?
相对而言,本征半导体中载流子数目极少,导电能力仍然很低。但如果在其中掺入微量的杂质,所形成的杂质半导体的导电性能将大大增强。由于掺入的杂质不同,杂质半导体可以分为N型和P型两大类。
N型半导体中掺入的杂质为磷或其他五价元素,磷原子在取代原晶体结构中的原子并构成共价键时,多余的第五个价电子很容易摆脱磷原子核的束缚而成为自由电子,于是半导体中的自由电子数目大量增加,自由电子成为多数载流子,空穴则成为少数载流子。
P型半导体中掺入的杂质为硼或其他三价元素,硼原子在取代原晶体结构中的原子并构成共价键时,将因缺少一个价电子而形成一个空穴,于是半导体中的空穴数目大量增加,空穴成为多数载流子,而自由电子则成为少数载流子。
注意,不论是N型半导体还是P型半导体,虽然都有一种载流子占多数,但整个晶体仍然是不带电的。
相对而言,本征半导体中载流子数目极少,导电能力仍然很低。但如果在其中掺入微量的杂质,所形成的杂质半导体的导电性能将大大增强。由于掺入的杂质不同,杂质半导体可以分为N型和P型两大类。
N型半导体中掺入的杂质为磷或其他五价元素,磷原子在取代原晶体结构中的原子并构成共价键时,多余的第五个价电子很容易摆脱磷原子核的束缚而成为自由电子,于是半导体中的自由电子数目大量增加,自由电子成为多数载流子,空穴则成为少数载流子。
P型半导体中掺入的杂质为硼或其他三价元素,硼原子在取代原晶体结构中的原子并构成共价键时,将因缺少一个价电子而形成一个空穴,于是半导体中的空穴数目大量增加,空穴成为多数载流子,而自由电子则成为少数载流子。
注意,不论是N型半导体还是P型半导体,虽然都有一种载流子占多数,但整个晶体仍然是不带电的。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2013-08-21
展开全部
离子注入需要有适用的离子注入设备。半导体掺杂用离子注入机的能量范围为20~400千电子伏。硼离子注入硅的注入深度一般在1微米以下,束流强度为几十至几百微安。离子注入机有先分析后加速和先加速后分析两种型式。
优点:(1)它是一种纯净的无公害的表面处理技术;(2)无需热激活,无需在高温环境下进行,因而不会改变工件的外形尺寸和表面光洁度;(3)离子注入层由离子束与基体表面发生一系列物理和化学相互作用而形成的一个新表面层,它与基体之间不存在剥落问题;(4)离子注入后无需再进行机械加工和热处理
优点:(1)它是一种纯净的无公害的表面处理技术;(2)无需热激活,无需在高温环境下进行,因而不会改变工件的外形尺寸和表面光洁度;(3)离子注入层由离子束与基体表面发生一系列物理和化学相互作用而形成的一个新表面层,它与基体之间不存在剥落问题;(4)离子注入后无需再进行机械加工和热处理
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询