求弧形面积公式是什么?
弧形面积公式:L=n(圆心角度数)× π(1)× r(半径)/180(角度制),L=α(弧度)× r(半径) (弧度制)。其中n是圆心角度数,r是半径,L是圆心角弧长。
扇形:r—扇形半径;a—圆心角度数。C=2r+2πr×(a/360);S=πr2×(a/360)。
弓形: l-弧长;b-弦长;h-矢高;r-半径;α-圆心角的度数 。
S=r2/2·(πα/180-sinα)=r2arccos[(r-h)/r] - (r-h)(2rh-h2)1/2=παr2/360 - b/2·[r2-(b/2)2]1/2=r(l-b)/2 + bh/2≈2bh/3
扩展资料:
举例说明弧形面积相关用法:半径为1cm,45°的圆心角所对的弧长为
l=nπr/180=45×π×1/180=45×3.14×1/180
约等于0.785
扇形的弧长第二公式为:
扇形的弧长,事实上就是圆的其中一段边长,扇形的角度是360度的几分之一,那么扇形的弧长就是这个圆的周长的几分之一,所以我们可以得出:
扇形的弧长=2πr×角度/360
其中,2πr是圆的周长,角度为该扇形的角度值。
弧形面积公式:L=n(圆心角度数)× π(1)× r(半径)/180(角度制),L=α(弧度)× r(半径) (弧度制)。其中n是圆心角度数,r是半径,L是圆心角弧长。
扇形:r—扇形半径;a—圆心角度数。C=2r+2πr×(a/360);S=πr2×(a/360)。
弓形: l-弧长;b-弦长;h-矢高;r-半径;α-圆心角的度数 。
S=r2/2·(πα/180-sinα)=r2arccos[(r-h)/r] - (r-h)(2rh-h2)1/2=παr2/360 - b/2·[r2-(b/2)2]1/2=r(l-b)/2 + bh/2≈2bh/3
扩展资料:
弧长公式
面积公式:n×π×r^2/360°(圆心角x圆周率x半径平方/360°)
弧长=半径×圆心角弧度数 (请一定要注意这里是使用的 弧度制 不是圆心角,角度数)
弧长=圆周率×圆心角角度×半径/180°
圆心角角度=180°×弧长/(半径×圆周率)
半径=180°×弧长/(圆周率×圆心角角度)
弧长为L
圆心角角度为n
半径为r
2013-08-27
弧形ABC的面积 = 扇形ABCO面积 - 三角形⊿AOC面积
= 5.986862047 – L(R-h)/2
= 5.986862047 – 3.24×(3.559615385–0.39)/2
= 0.852085123.
弧长 = 园周长×园心角∠AOC / 360°
= 2×3.1416 R×54.14342548°/360°
= 2×3.1416 ×3.559615385×54.14342548°/360°
= 3.363769059.
还有一种推导式:
弧长L=n
2π
R/360=nπ
R/180(n是弧所对的圆心角)
所以面积S=1/2LR=nπR平方/360
2013-08-27
或 S=LR/2 (L是弧长..R是半径)