高一圆的方程,求纸上解答,不发图就不用回答了,因为看不懂。。。
(1) 圆的方程可以变为(x - 1)² + (y - 1)² = 1
圆心C(1, 1),半径r = 1
显然此圆与x轴和y轴分别切于M(1, 0), N(0, 1)
要使|OA|, |OB|均大于2,切点的纵横坐标必须都大于1 (图中的红线,不包括(1, 2), (2, 1))
于是A, B于是都在正半轴上, A(a, 0), B(0, b)
l的方程: x/a + y/b = 1, bx + ay - ab = 0
C与l的距离d = r = 1 = |b + a - ab|/√(a² + b²)
平方,简化并除以ab: ab - 2a - 2b + 2 = 0
a(b - 2) -2(a - 2) - 2 = (a - 2)(b - 2) - 2 = 0
(a -2) (b - 2) = 2
(2)
(a -2) (b - 2) = 2, b = 2 + 2/(a - 2)
S = ab/2 = a + a/(a - 2) = a + (a - 2 + 2)/(a - 2) = 1 + a - 2 + 2 + 2/(a - 2)
= 3 + a - 2 + 2/(a - 2)
≥3 + 2√[(a - 2)*2/(a - 2)]
= 3 + 2√2
图稍后补上。