求这几个函数的值域,速度求解。
1个回答
展开全部
y=√﹣2x²+x+3
∵﹣2x²+x+3=﹣2(x²-1/2x+1/16)+25/8=﹣2(x-1/4)²+25/8≤25/8
∵﹣2x²+x+3≥0 ∴y∈[0,5√2/4]
y=(x²-x+1)/(x²+x+1)
∴x²-x+1=yx²+yx+y ∴(1-y)x²-(1+y)x+1-y=0
当y=1时,﹣2x=0 x=0 y=(x²-x+1)/(x²+x+1)有意义
当y≠1时,x存在,即(1-y)x²-(1+y)x+1-y=0有解
∴⊿=(1+y)²-4(1-y)²≥0 ∴1/3≤y≤3
∴y∈[1/3,3]
y=x+2/x(0<x<1)
设0<x1<x2<1,则y1-y2=(x1-x2)+2(1/x1-1/x2)=(x1-x2)(1-2/x1x2)
=(x1-x2)(x1x2-2)/x1x2
∵0<x1<x2<1 ∴x1-x2<0 x1x2-2<0 x1x2>0 ∴y1-y2>0 ∴y1>y2
∴y=x+2/x在0<x<1上是减函数 ∴y∈(3,+∞)
y=(2x+1)/(x-3)
∵y=(2x+1)/(x-3)=[2(x-3)+7]/(x-3)=2+7/(x-3) ∵x-3≠0 ∴y≠2
∴y∈(﹣∞,2)∪(2,﹢∞)
y=2x+√2x-1
设t=√2x-1,则y=t²+1+t(t≥0)
∴y=(t²+t+1/4)+3/4=(t+1)²+3/4 ∵t≥0 ∴y≥1+3/4=7/4 ∴y∈[7/4,﹢∞)
y=(x²+5)/√(x²+4)=√(x²+4)+1/√(x²+4)
设t=√(x²+4),则y=t+1/t(t≥2)
设t2>t1≥2 ∴y2-y1=(t2-t1)+(1/t2-1/t1)=(t2-t1)(t1t2-1)/t1t2
∵t2>t1≥2 ∴t2-t1>0 t1t2-1>0 t1t2>0 ∴y2-y1>0 ∴y2>y1
∴y是增函数 ∴y≥5/2 ∴y∈[5/2,﹢∞)
∵﹣2x²+x+3=﹣2(x²-1/2x+1/16)+25/8=﹣2(x-1/4)²+25/8≤25/8
∵﹣2x²+x+3≥0 ∴y∈[0,5√2/4]
y=(x²-x+1)/(x²+x+1)
∴x²-x+1=yx²+yx+y ∴(1-y)x²-(1+y)x+1-y=0
当y=1时,﹣2x=0 x=0 y=(x²-x+1)/(x²+x+1)有意义
当y≠1时,x存在,即(1-y)x²-(1+y)x+1-y=0有解
∴⊿=(1+y)²-4(1-y)²≥0 ∴1/3≤y≤3
∴y∈[1/3,3]
y=x+2/x(0<x<1)
设0<x1<x2<1,则y1-y2=(x1-x2)+2(1/x1-1/x2)=(x1-x2)(1-2/x1x2)
=(x1-x2)(x1x2-2)/x1x2
∵0<x1<x2<1 ∴x1-x2<0 x1x2-2<0 x1x2>0 ∴y1-y2>0 ∴y1>y2
∴y=x+2/x在0<x<1上是减函数 ∴y∈(3,+∞)
y=(2x+1)/(x-3)
∵y=(2x+1)/(x-3)=[2(x-3)+7]/(x-3)=2+7/(x-3) ∵x-3≠0 ∴y≠2
∴y∈(﹣∞,2)∪(2,﹢∞)
y=2x+√2x-1
设t=√2x-1,则y=t²+1+t(t≥0)
∴y=(t²+t+1/4)+3/4=(t+1)²+3/4 ∵t≥0 ∴y≥1+3/4=7/4 ∴y∈[7/4,﹢∞)
y=(x²+5)/√(x²+4)=√(x²+4)+1/√(x²+4)
设t=√(x²+4),则y=t+1/t(t≥2)
设t2>t1≥2 ∴y2-y1=(t2-t1)+(1/t2-1/t1)=(t2-t1)(t1t2-1)/t1t2
∵t2>t1≥2 ∴t2-t1>0 t1t2-1>0 t1t2>0 ∴y2-y1>0 ∴y2>y1
∴y是增函数 ∴y≥5/2 ∴y∈[5/2,﹢∞)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询