
不定积分?
2个回答
展开全部
分享解法如下。设t=e^x。∴dx=dt/t。原式=∫dt/[t(1+t)²]。
而,1/[t(1+t)²]=(1+t-t)/[t(1+t)²]=1/[t(1+t)]-1/(1+t)²=1/t-1/(1+t)-1/(1+t)²。
∴原式=∫[1/t-1/(1+t)-1/(1+t)²]dt=ln丨t丨-ln丨1+t丨+1/(1+t)+C。
∴原式=x-ln(1+e^x)+1/(1+e^x)+C。
供参考。
而,1/[t(1+t)²]=(1+t-t)/[t(1+t)²]=1/[t(1+t)]-1/(1+t)²=1/t-1/(1+t)-1/(1+t)²。
∴原式=∫[1/t-1/(1+t)-1/(1+t)²]dt=ln丨t丨-ln丨1+t丨+1/(1+t)+C。
∴原式=x-ln(1+e^x)+1/(1+e^x)+C。
供参考。
展开全部
∫[1/(1+e^x)²]dx【令e^x=u,则x=lnu;dx=du/u】
=∫[1/u(1+u)²]du=∫[(1/u)-(u+2)/(1+u)²]du=∫(1/u)du-∫[(u+2)/(1+u)²]du
=lnu-∫[u+1+1)/(1+u)²]du=lnu-∫[1/(1+u)+1/(1+u)²]du
=lnu-∫[1/(1+u)]d(1+u)-∫[1/(1+u)²]d(1+u)
=lnu-ln(1+u)+[1/(1+u)]+c=x-ln(1+e^x)+[1/(1+e^x)]+c;
=∫[1/u(1+u)²]du=∫[(1/u)-(u+2)/(1+u)²]du=∫(1/u)du-∫[(u+2)/(1+u)²]du
=lnu-∫[u+1+1)/(1+u)²]du=lnu-∫[1/(1+u)+1/(1+u)²]du
=lnu-∫[1/(1+u)]d(1+u)-∫[1/(1+u)²]d(1+u)
=lnu-ln(1+u)+[1/(1+u)]+c=x-ln(1+e^x)+[1/(1+e^x)]+c;
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询