在三角形ABC中角A.B对应边a.b,满足a+b=acotA+bcotB.求角C
1个回答
展开全部
a+b=acosA/sinA+bcosB/sinB
合并同类项,a(1-cosA/sinA)=b(cosB/sinB-1)
由正弦定理a/b=sinA/sinB
得到:cosB-sinB=sinA-cosA(自己带进去化简吧)
根据两角和差公式,两边都提取根号2
根号2(sin45°cosB-cos45°sinB)=根号2(sinAcos45°-cosAsin45°)
即:sin(45°-B)=sin(A-45°)
所以:45°-B=A-45° 或 45°-B+A-45°=180°(舍去)
所以A+B=90°,即C=90°
合并同类项,a(1-cosA/sinA)=b(cosB/sinB-1)
由正弦定理a/b=sinA/sinB
得到:cosB-sinB=sinA-cosA(自己带进去化简吧)
根据两角和差公式,两边都提取根号2
根号2(sin45°cosB-cos45°sinB)=根号2(sinAcos45°-cosAsin45°)
即:sin(45°-B)=sin(A-45°)
所以:45°-B=A-45° 或 45°-B+A-45°=180°(舍去)
所以A+B=90°,即C=90°
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询