利用微积分证明:当x的绝对值很小时,ln(1+x+x2)≈x 我来答 1个回答 #合辑# 机票是越早买越便宜吗? 科创17 2022-07-02 · TA获得超过5899个赞 知道小有建树答主 回答量:2846 采纳率:100% 帮助的人:174万 我也去答题访问个人页 关注 展开全部 因为:lim ln(x^2+x+1)/x x------0 分子分母均趋于0,用洛不塔法则,分子分母同时求导. =lim (2x+1)/(x^2+x+1) x======0 =lim(0+1)/(0+0+1)=1 所以在x趋于0时,ln(1+x+x^2)与x等价,因此,当x的绝对值很小时,ln(1+x+x2)≈x 已赞过 已踩过< 你对这个回答的评价是? 评论 收起 推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询 其他类似问题 2022-08-12 利用微分证明,当x的绝对值很小时,1/(1+x^2)≈1-x^2,利用微分证明, 2022-07-07 微积分,中值定理 证明题: 当x>0时,x/(1+x) 2022-09-07 证明:当绝对值x很小时,ln(x+!)约等于x. 2022-06-16 微积分 、证明题 1.证明:当x>0时,ex>1+x. 2022-06-11 用凑微分法求下列不定积分:∫(1/xlnx)dx 2022-12-23 用微积分的近似值公式,当|x|很小时,arcsinx= 2022-07-21 证明e^-x ·cosnx 在(0,1)上的积分的绝对值小于等于1 n是正数 2022-06-06 用微积分证明:sinx的绝对值不为周期函数, 这里标的绝对值为abs1x1 为你推荐: