二阶非齐次线性微分方程

 我来答
露胖胖sunny
2022-12-22 · TA获得超过315个赞
知道小有建树答主
回答量:882
采纳率:97%
帮助的人:20.1万
展开全部

二阶非齐次线性微分方程内容如下:

这是一类具有非齐次项的线性微分方程,其中一阶非齐次线性微分方程的表达式为y'+p(x)y=Q(x);二阶常系数非齐次线性微分方程的表达式为y''+py'+qy=f(x)。研究非齐次线性微分方程其实就是研究其解的问题,它的通解是由其对应的齐次方程的通解加上其一个特解组成。

一阶线性微分方程可分两类,一类是齐次形式的,它可以表示为y'+p(x)y=0,另一类就是非齐次形式的,它可以表示为y'+p(x)y=Q(x)。

齐次线性方程与非齐次方程比较一下对理解齐次与非齐次微分方程是有利的。对于非齐次微分方程的解来讲,类似于线性方程解的结构结论还是成立的。就是:非齐次微分方程的通解可以表示为齐次微分方程的通解加上一个非齐次方程的特解。

二阶非齐次线性微分方程的求解:

二阶常系数非齐次线性微分方程的表达式为y''+py'+qy=f(x),它的特解。

当,r和k都是实数,y*=y1是方程的特解。

当,r=a+ib,k=a-ib(b≠0)是一对共轭复根,y*=1/2(y1+y2)是方程的实函数解。

三阶非齐次线性微分方程的求解:

三阶常系数非齐次线性微分方程的表达式为y'''+p1y''+p2y'+p3y=f(x),设其特征方程的三个特征跟分别是r1,r2,r3,特解为

(1)当r1,r2,r3都是实数时,y*=y1是方程的特解。

(2)当r1是实数,r2,r3是共轭复数时,则y1和y2是共轭复数,因此,y*=1/2(y1+y2)是方程的实函数解。

富港检测技术(东莞)有限公司_
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发... 点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式