如何怎样解绝对值不等式
4个回答
展开全部
解绝对值不等式要把握住重点,即去绝对值。用的方法有:定义法,平方法,零点分段法,序轴法,分类讨论法。
绝对值不等式,在不等式应用中,经常涉及重量、面积、体积等,也涉及某些数学对象的大小或绝对值。它们都是通过非负数来度量的。解决与绝对值有关的问题其关键往往在于去掉绝对值符号。
当a,b同号时它们位于原点的同一边,与﹣b的距离等于它们到原点的距离之和。2.当a,b异号时它们分别位于原点的两边,a与﹣b的距离小于它们到原点的距离之和。
解决与绝对值有关的问题,其关键往往在于去掉绝对值符号。而去掉绝对值符号的基本方法有二个:
平方,所谓平方,比如,|x|=3,可化为x^2=9,绝对值符号没有了。
讨论,所谓讨论,即x≥0时,|x|=x;x<0时,|x|=-x,绝对值符号也没有了。
|a|表示数轴上的点a与原点的距离叫做数a的绝对值。||a|-|b||≤|a+b|≤|a|+|b|,当且仅当ab≤0时左边等号成立,ab≥0时右边等号成立。
展开全部
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2017-08-16
展开全部
绝对值不等式的常见形式及解法
绝对值不等式解法的基本思路是:去掉绝对值符号,把它转化为一般的不等式求解,转化的方法一般有:(1)绝对值定义法;(2)平方法;(3)零点区域法。常见的形式有以下几种。
1. 形如不等式:|x|<a(a>0)
利用绝对值的定义得不等式的解集为:-a<x<a
2. 形如不等式:|x|>=a(a>0)
它的解集为:x<=-a或x>=a。
3. 形如不等式|ax+b|<c(c>0)
它的解法是:先化为不等式组:-c<ax+b<c,再利用不等式的性质来得解集。
4. 形如 |ax+b|>c(c>0)
它的解法是:先化为不等式组:ax+b>c或ax+b<-c,再利用不等式的性质求出原不等式的解集。
绝对值不等式解法的基本思路是:去掉绝对值符号,把它转化为一般的不等式求解,转化的方法一般有:(1)绝对值定义法;(2)平方法;(3)零点区域法。常见的形式有以下几种。
1. 形如不等式:|x|<a(a>0)
利用绝对值的定义得不等式的解集为:-a<x<a
2. 形如不等式:|x|>=a(a>0)
它的解集为:x<=-a或x>=a。
3. 形如不等式|ax+b|<c(c>0)
它的解法是:先化为不等式组:-c<ax+b<c,再利用不等式的性质来得解集。
4. 形如 |ax+b|>c(c>0)
它的解法是:先化为不等式组:ax+b>c或ax+b<-c,再利用不等式的性质求出原不等式的解集。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解含绝对值的不等式只有两种模型,它的解法都是由以下两个得来:
(1)|X|>1那么X>1或者X<-1; |X|>3那么X>3或者X<-3;
即)|X|>a那么X>a或者X<-a;(两根之外型)
(2))|X|<1那么-1<X<1;|X|<3那么-3<X<3
即))|X|<a那么-a<X<a;(两根之内型)
遇到这类不等式只需用对型把绝对值去掉即可:
如:|1-3X|>4 我把绝对值中的所有式子看成整体,不等式是两根之外型,则:1-3X>4或者1-3X<-4,从而又解一次不等式得解集为:X>5/3或者X<-1
又如:|1-3X|<2我把绝对值中的所有式子看成整体,不等式是两根之内型
则:-2<1-3X<2从而又解一次不等式得解集为:-1/3<x<1
记忆:大于取两根之外,小于取两根之间
如果您对我的回答满意,请给好评,谢谢!
(1)|X|>1那么X>1或者X<-1; |X|>3那么X>3或者X<-3;
即)|X|>a那么X>a或者X<-a;(两根之外型)
(2))|X|<1那么-1<X<1;|X|<3那么-3<X<3
即))|X|<a那么-a<X<a;(两根之内型)
遇到这类不等式只需用对型把绝对值去掉即可:
如:|1-3X|>4 我把绝对值中的所有式子看成整体,不等式是两根之外型,则:1-3X>4或者1-3X<-4,从而又解一次不等式得解集为:X>5/3或者X<-1
又如:|1-3X|<2我把绝对值中的所有式子看成整体,不等式是两根之内型
则:-2<1-3X<2从而又解一次不等式得解集为:-1/3<x<1
记忆:大于取两根之外,小于取两根之间
如果您对我的回答满意,请给好评,谢谢!
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询