求初二数学勾股定理1到50的勾股数。

马上半期考试,各位老师帮帮忙啊,顺便可以的再给我举一个例题哈。... 马上半期考试,各位老师帮帮忙啊,顺便可以的再给我举一个例题哈。 展开
 我来答
匿名用户
2013-09-18
展开全部
下面是50以内的整数勾股数i=3 j=4 k=5
i=5 j=12 k=13
i=6 j=8 k=10
i=7 j=24 k=25
i=8 j=15 k=17
i=9 j=12 k=15
i=9 j=40 k=41
i=10 j=24 k=26
i=11 j=60 k=61
i=12 j=16 k=20
i=12 j=35 k=37
i=13 j=84 k=85
i=14 j=48 k=50
i=15 j=20 k=25
i=15 j=36 k=39
i=16 j=30 k=34
i=16 j=63 k=65
i=18 j=24 k=30
i=18 j=80 k=82
i=20 j=21 k=29
i=20 j=48 k=52
i=21 j=28 k=35
i=21 j=72 k=75
i=24 j=32 k=40
i=24 j=45 k=51
i=24 j=70 k=74
i=25 j=60 k=65
i=27 j=36 k=45
i=28 j=45 k=53
i=30 j=40 k=50
i=30 j=72 k=78
i=32 j=60 k=68
i=33 j=44 k=55
i=33 j=56 k=65
i=35 j=84 k=91
i=36 j=48 k=60
i=36 j=77 k=85
i=39 j=52 k=65
i=39 j=80 k=89
i=40 j=42 k=58
i=40 j=75 k=85
i=42 j=56 k=70
i=45 j=60 k=75
i=48 j=55 k=73
i=48 j=64 k=80
但是还是自己理解方法比较好:希望下面这些常用求勾股法会对你有好处例一   设直角三角形三边长为a、b、c,由勾股定理知a^2+b^2=c^2,这是构成直角三角形三边的充分且必要的条件。因此,要求一组勾股数就是要解不定方程x^2+y^2=z^2,求出正整数的解。   例:已知在△ABC中,三边长分别是a、b、c,a=n2-1,b=2n,c=n2+1(n>1),求证:∠C=90°。此例说明了对于大于2的任意偶数2n(n>1),都可构成一组勾股数,三边分别是:2n、n2-1、n2+1。如:6、8、10,8、15、17,10、24、26…等。 例二   再来看下面这些勾股数:3、4、5,5、12、13,7、24、25,9、40、41,11、60、61…这些勾股数都是以奇数为一边构成的直角三角形。由上例已知任意一个大于2的偶数可以构成一组勾股数,实际上以任意一个大于1的奇数2n+1(n>1)为边也可以构成勾股数,其三边分别是2n+1、2n²+2n、2n²+2n+1,这可以通过勾股定理的逆定理获证。   观察分析上述的勾股数,可看出它们具有下列二个特点:   1、直角三角形短直角边为奇数,另一条直角边与斜边是两个连续自然数,且两个自然数的和恰是短直角边的平方。   2、一个直角三角形的周长等于短直角边的平方与短边自身的和。 编辑本段掌握上述二个特点,为解一类题提供了方便
匿名用户
2013-09-18
展开全部
举个例子当a为大于1的奇数2n+1时,b=2*n^2+2*n, c=2*n^2+2*n+1。

实际上就是把a的平方数拆成两个连续自然数,例如:
n=1时(a,b,c)=(3,4,5)
n=2时(a,b,c)=(5,12,13)
n=3时(a,b,c)=(7,24,25)

对于a=4n (n>=2), b=4*n^2-1, c=4*n^2+1,例如:
n=2时(a,b,c)=(8,15,17)
n=3时(a,b,c)=(12,35,37)
n=4时(a,b,c)=(16,63,65)

勾股公式:
X = P^2 + PQ (X等于P平方加PQ)
Y = Q^2/ 2 + PQ (Y等于二分之Q方加PQ)
Z = P^2 + Q^2 / 2 + PQ (Z等于P平方加二分之Q方加PQ)
以任意奇数代入P ,任意偶数代入Q ,即可得到唯一一组勾股数。
例如P = 5 ,Q = 8 ,得到
X = 25 + 5×8 = 65
Y = 32 + 5×8 = 72
Z = 25 + 32 + 5×8 = 97

1到50勾股数太多了,这里也写不了!希望对你有帮助
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
2013-09-18
展开全部
1).3,4,5。2).6,8,10。3).9,12,15。4).12,16,20。5).15,20,25。6).18,24,30。7).21,28,35。8).24,32,40。9).27,36,45。10).30,40,50。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式