反三角函数的奇偶性
反正弦、反正切函数是奇函数,反余弦、反余切函数是非奇非偶函数。
y=arcsinx,定义域[-1,1],值域[-π/2,π/2],奇函数,单调递增。
y=arccosx,定义域[-1,1],值域[0,π],非奇非偶函数,单调递减。
y=arctanx,定义域(-∞,+∞),值域(-π/2,π/2),奇函数,单调递增。
y=arccotx,定义域(-∞,+∞),值域(0,π),非奇非偶函数,单调递减。
反三角函数是一种基本初等函数。它是反正弦arcsin x,反余弦arccos x,反正切arctan x,反余切arccot x,反正割arcsec x,反余割arccsc x这些函数的统称,各自表示其反正弦、反余弦、反正切、反余切 ,反正割,反余割为x的角。
扩展资料
反三角函数是闹神一种基本初等函数。它是反正弦arcsin x,反余弦arccos x,反正切arctan x,反余切三角函数的反函数不是单值函数,因为它并不满足一个自变量对应一个函数值的要求,其图像与其原函数关于函数 y=x 对称。欧拉提出反三角函数的概念,并且首先使用了“arc+函数名”的形式表示反三角函数。
为了使单值的反三角函数所确定区间具有代表性,常遵循如下条件:
1、为了保证函数与自变量之间的单值对应,确定的区间必须具有单调性;
2、函数在这个区间最好是连续的(这里则搭之所以说最好,是因为反正割和反余割函数是尖端的);
3、为了使研究方便,常要求所选择的区间包含0到π/2的角;
4、所确定的区间上的函数值域应与整函数的定义域相同。这样确定的反三角函数液盯亏就是单值的,为了与上面多值的反三角函数相区别,在记法上常将Arc中的A改记为a,例如单值的反正弦函数记为arcsin x。
反正弦、反正切函数是奇函数,反余弦、反余切函数是非奇非偶函数。
y=arcsinx,定义域[-1,1],值域[-π/2,π/2],奇函数,单调递增。
y=arccosx,定义域[-1,1],值域[0,π],非奇非偶函数滑神,单调递减。
y=arctanx,圆行定义域(-∞,+∞),值域(-π/2,π/2),奇函数,单调递增。
y=arccotx,定义域(-∞,+∞),值域(0,π),非奇非偶函数,单调递减。
反三角函数是一种基本初等函数。它是反正弦arcsin x,反余弦arccos x,反正切arctan x,反余切arccot x,反正割arcsec x,反余割arccsc x这些函数的统称,各自表示其反正弦、反余弦、反正切、反余切 ,反正割,反余割为x的角。
扩展资料:
为了得到单值对应的反三角函数,人们把全体实数分成许多区间,使每个区间内的每个有定义的 y 值都只能有惟一确定的 x 值与之对应。为了使单值的反三角函数所确定区间具有代表性,常遵循如下条件:
1、为了保证函数与自变量之间的单值对应,确定的区间必须具有单调性;
2、函数在这个区间最好是连续的(这里之所以说最好,是因为反正割和反余割函数是尖端的);
3、为了使研究方便,常要求所选择的区间包含0到π/2的角;
4、所确定的区间上的函数值域应与整函数的定义域相同。这样确定的反三角函数就是单值的,为了与上面多值的反三角函数相区别,在记法上常将Arc中的A改记为a,例如单值的反正弦函数记为arcsin x。
参橘让哗考资料来源:百度百科——反三角函数