3个回答
展开全部
焦点
:
r=ep/(1-ecosθ),e是离心率,p是焦点到准线的距离,θ是与极轴的夹角,是极坐标中的表达式,根据e与1的大小关系分为椭圆,抛物线,双曲线。可以用第二定义证.
双曲线
:
设双曲线为:(x/a)^2 -(y/b)^2 =1
焦点为f(c,0) ,准线为:x= ±a^2/c
设a(x ,y)是双曲线右支上的任一点
则a到准线的距离为:|x±a^2/c|=x±a^2/c
由双曲线的第二定义得: fa/|c±a^2/c| = e
所以 fa = e*(x ±a^2/c)= (c/a) *(x ±a^2/c) = ex ± a
椭圆
:
f1为左焦点, f2为右焦点。(这个可以从增减性看出来,所以符号不用背啦)
|pf1|=a+ex0. |pf2|=a-ex0.
即当椭圆的焦点在x轴上时,椭圆的左、右
分别是
|pf1|=a+ey0,|pf2|=a-ey0
:
r=ep/(1-ecosθ),e是离心率,p是焦点到准线的距离,θ是与极轴的夹角,是极坐标中的表达式,根据e与1的大小关系分为椭圆,抛物线,双曲线。可以用第二定义证.
双曲线
:
设双曲线为:(x/a)^2 -(y/b)^2 =1
焦点为f(c,0) ,准线为:x= ±a^2/c
设a(x ,y)是双曲线右支上的任一点
则a到准线的距离为:|x±a^2/c|=x±a^2/c
由双曲线的第二定义得: fa/|c±a^2/c| = e
所以 fa = e*(x ±a^2/c)= (c/a) *(x ±a^2/c) = ex ± a
椭圆
:
f1为左焦点, f2为右焦点。(这个可以从增减性看出来,所以符号不用背啦)
|pf1|=a+ex0. |pf2|=a-ex0.
即当椭圆的焦点在x轴上时,椭圆的左、右
分别是
|pf1|=a+ey0,|pf2|=a-ey0
追问
能说个有用的吗?
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
椭圆
文字语言定义:平面内一个动点到一个定点与一条定直线的距离之比是一个小于1的正常数e。平面内一个动点到两个定点(焦点)的距离和等于定长2a的点的集合(设动点为P,两个定点为F1和F2,则PF1+PF2=2a)。定点是椭圆的焦点,定直线是椭圆的准线,常数e是椭圆的离心率。
标准方程:
1.中心在原点,焦点在x轴上的椭圆标准方程:(x^2/a^2)+(y^2/b^2)=1
其中a>b>0,c>0,c^2=a^2-b^2.
2.中心在原点,焦点在y轴上的椭圆标准方程:(x^2/b^2)+(y^2/a^2)=1
其中a>b>0,c>0,c^2=a^2-b^2。
参数方程:x=acosθ y=bsinθ (θ为参数
,0≤θ≤2π)
双曲线
文字语言定义:平面内一个动点到一个定点与一条定直线的距离之比是一个大于1的常数e。定点是双曲线的焦点,定直线是双曲线的准线,常数e是双曲线的离心率。
标准方程:
1.中心在原点,焦点在x轴上的双曲线标准方程: (x^2/a^2)-(y^2/b^2)=1
其中a>0,b>0,c^2=a^2+b^2.
2.中心在原点,焦点在y轴上的双曲线标准方程: (y^2/a^2)-(x^2/b^2)=1.
其中a>0,b>0,c^2=a^2+b^2.
参数方程:x=asecθ y=btanθ (θ为参数 )
直角坐标(中心为原点):x^2/a^2 - y^2/b^2 = 1
(开口方向为x轴) y^2/a^2 - x^2/b^2 = 1 (开口方向为y轴)
抛物线
文字语言定义:平面内一个动点到一个定点与一条定直线的距离之比是等于1。定点是抛物线的焦点,定直线是抛物线的准线。
参数方程
x=2pt^2 y=2pt
(t为参数) t=1/tanθ(tanθ为曲线上点与坐标原点确定直线的斜率)特别地,t可等于0
直角坐标
y=ax^2+bx+c (开口方向为y轴,a≠0) x=ay^2+by+c (开口方向为x轴,a≠0 )
圆锥曲线(二次非圆曲线)的统一极坐标方程为
ρ=ep/(1-ecosθ)
其中e表示离心率,p为焦点到准线的距离。
文字语言定义:平面内一个动点到一个定点与一条定直线的距离之比是一个小于1的正常数e。平面内一个动点到两个定点(焦点)的距离和等于定长2a的点的集合(设动点为P,两个定点为F1和F2,则PF1+PF2=2a)。定点是椭圆的焦点,定直线是椭圆的准线,常数e是椭圆的离心率。
标准方程:
1.中心在原点,焦点在x轴上的椭圆标准方程:(x^2/a^2)+(y^2/b^2)=1
其中a>b>0,c>0,c^2=a^2-b^2.
2.中心在原点,焦点在y轴上的椭圆标准方程:(x^2/b^2)+(y^2/a^2)=1
其中a>b>0,c>0,c^2=a^2-b^2。
参数方程:x=acosθ y=bsinθ (θ为参数
,0≤θ≤2π)
双曲线
文字语言定义:平面内一个动点到一个定点与一条定直线的距离之比是一个大于1的常数e。定点是双曲线的焦点,定直线是双曲线的准线,常数e是双曲线的离心率。
标准方程:
1.中心在原点,焦点在x轴上的双曲线标准方程: (x^2/a^2)-(y^2/b^2)=1
其中a>0,b>0,c^2=a^2+b^2.
2.中心在原点,焦点在y轴上的双曲线标准方程: (y^2/a^2)-(x^2/b^2)=1.
其中a>0,b>0,c^2=a^2+b^2.
参数方程:x=asecθ y=btanθ (θ为参数 )
直角坐标(中心为原点):x^2/a^2 - y^2/b^2 = 1
(开口方向为x轴) y^2/a^2 - x^2/b^2 = 1 (开口方向为y轴)
抛物线
文字语言定义:平面内一个动点到一个定点与一条定直线的距离之比是等于1。定点是抛物线的焦点,定直线是抛物线的准线。
参数方程
x=2pt^2 y=2pt
(t为参数) t=1/tanθ(tanθ为曲线上点与坐标原点确定直线的斜率)特别地,t可等于0
直角坐标
y=ax^2+bx+c (开口方向为y轴,a≠0) x=ay^2+by+c (开口方向为x轴,a≠0 )
圆锥曲线(二次非圆曲线)的统一极坐标方程为
ρ=ep/(1-ecosθ)
其中e表示离心率,p为焦点到准线的距离。
更多追问追答
追问
你这都是,最基本的了吧!
你这都是,最基本的了吧!
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询