3个回答
展开全部
n/(n^2+nπ) ≤ n/(n^2+mπ) ≤ n/(n^2 + π) 注:n ≤ m ≤ 1
所以,
n*[n/(n^2+nπ)]=n^2/(n^2+nπ) ≤ ∑n/(n^2+mπ) ≤ n*[n/(n^2+π) = n^2/(n^2+π)
因为:lim[n^2/(n^2+nπ)]=lim[1/(1+π/n)] = 1
lim[n^2/(n^2+π)] = lim[1/(1+π/n^2)] = 1
所以,
lim∑n/(n^2+mπ) = 1
所以,
n*[n/(n^2+nπ)]=n^2/(n^2+nπ) ≤ ∑n/(n^2+mπ) ≤ n*[n/(n^2+π) = n^2/(n^2+π)
因为:lim[n^2/(n^2+nπ)]=lim[1/(1+π/n)] = 1
lim[n^2/(n^2+π)] = lim[1/(1+π/n^2)] = 1
所以,
lim∑n/(n^2+mπ) = 1
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2013-10-08
展开全部
参考书本例题就可以啦
证明:limn【1/(n^2+π)+1/(n^2+2π)+...+1/(n^2+nπ)】<limn(1/n^2+1/n^2+...+1/n^2)
=limn*n/n^2=limn^2/n^2=1
又因为limn【1/(n^2+π)+1/(n^2+2π)+...+1/(n^2+nπ)】>limn【(1/n^2+nπ)+(1/n^2+nπ)+......(1/n^2+nπ)】
=limn(n/(n^2+nπ)
=limn/n+π)
=1
所以limn【1/(n^2+π)+1/(n^2+2π)+...+1/(n^2+nπ)】=1 成立。
证明:limn【1/(n^2+π)+1/(n^2+2π)+...+1/(n^2+nπ)】<limn(1/n^2+1/n^2+...+1/n^2)
=limn*n/n^2=limn^2/n^2=1
又因为limn【1/(n^2+π)+1/(n^2+2π)+...+1/(n^2+nπ)】>limn【(1/n^2+nπ)+(1/n^2+nπ)+......(1/n^2+nπ)】
=limn(n/(n^2+nπ)
=limn/n+π)
=1
所以limn【1/(n^2+π)+1/(n^2+2π)+...+1/(n^2+nπ)】=1 成立。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
n^2/n^2+π<这个式子(简称Y吧)<n^2/n^2+nπ
由于n趋于正无穷
所以 左边= 1/(1+π/n^2)=1
右边=1/(1+π/n)=1
1<Y<1
所以Y=1
由于n趋于正无穷
所以 左边= 1/(1+π/n^2)=1
右边=1/(1+π/n)=1
1<Y<1
所以Y=1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询