求解线性代数题,谢谢

lry31383
高粉答主

2013-10-10 · 说的都是干货,快来关注
知道大有可为答主
回答量:2.5万
采纳率:91%
帮助的人:1.6亿
展开全部
(1)
W1+W2 基 即向量组 α1,...,αr,β1,...,βs 的极大无关组
W1+W2 维数 即向量组 α1,...,αr,β1,...,βs 的秩
所以将向量组α1,...,αr,β1,...,βs 按列向量构成矩阵, 用初等行变换化为梯矩阵
非零行数即维数, 非零行的首非零元所在列对应的向量构成基.

(2) W1交W2 的维数
由(1)可得α1,...,αr的秩, 即 dim(W1)
同样, 得 dim(W2)
由于 dim(W1+W2) = dim(W1)+dim(W2)-dim(W1交W2)
故可得 dim(W1交W2)

(3) W1交W2 的基
W1交W2中的向量满足 k1α1+...+krαr = m1β1+...+msβs
解此齐次线性方程组得向量的一般表示式, 进而得一极大无关组
来自:求助得到的回答
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式