函数f x=ax2+(2+a)x+1是偶函数则函数的单调递增区间为

为什么是(-∞,0]... 为什么是(-∞,0] 展开
暖眸敏1V
2013-10-13 · TA获得超过9.6万个赞
知道大有可为答主
回答量:1.8万
采纳率:90%
帮助的人:9606万
展开全部
f (x)=ax^2+(2+a)x+1是偶函数
那么f(-x)=f(x)
即ax^2-(2+a)x+1=ax^2+(2+a)x+1
∴2(2+a)x=0
∵x是变量
∴系数2(2+a)=0
∴a=-2
那么f(x)=-2x^2+1
对称轴为y轴,开口朝下
∴函数单调递增区间为(-∞,0]
匿名用户
2013-10-13
展开全部
因为a是-2
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式