已知数列an是首项为a 且公比q不等于一1的等比数列 sn是其前n项和 a1 2a7 3a4成等差数
已证得12s3s6s12-s6成等比数列,求和Tn=a1+2a4+3a7+…+na(3n-2)...
已证得12s3 s6 s12-s6成等比数列,求和 Tn=a1+2a4+3a7+…+na(3n-2)
展开
2个回答
2013-10-16
展开全部
证明:
∵a1,2a7,3a4成等差数列。 a7=a1×q^6 a4=a1×q^3
∴ 4a7=a1 3a4 4a1×q^6=a1 a1×q^3
令q^3=x
4x^-3x-1=0 x1=q^3=1 ∵q≠1 ∴舍去
x2=q^3=-1/4
S6=a1×(1-q^6)/(1-q)
S3=a1×(1-q^3)/(1-q)
S12=a1×(1-q^12)/(1-q)
S12-S6=a1×q^6×(1-q^6)/(1-q)
12S3×(S12-S6)
=(a1)^12×(1-q^6)×(1-q^3)×q^6/(1-q)^
=[(a1)^×(1-q^6))×(1-q^3)/(1-q)^]×q^6×12
=[(a1)^×(1-q^6)×(1-q^3)/(1-q)^]×(3/4)
(S6)^=(a1)^×(1-q^6)^)×(1-q^3)/(1-q)^
=[(a1)^×(1-q^6))×(1-q^3)/(1-q)^]×(1 q^3)
=[(a1)^×(1-q^6))×(1-q^3)/(1-q)^]×(3/4)
∴(S6)^=12S3×(S12-S6) 12S3,S6,S12-S6成等比数列
(2)
Tn=a1 2a4 3a7+... na(3n-2)
=a1 2a1q^3 3a1q^6 4a1q^9 ......na1q^(3n-3)
令q^3=k
Tn=a1 2a1k 3a1k^2 4a1k^3 ......na1k^(n-1)
k×Tn=a1k 2a1k^2 3a1k^3 4a1k^4 ......na1k^(n)
Tn-kTn=a1[1 k k^ k^3 k^4 ... k^n)
Tn=a×(1-k^n)/(1-k)^
其中k=q^3=-1/4
∵a1,2a7,3a4成等差数列。 a7=a1×q^6 a4=a1×q^3
∴ 4a7=a1 3a4 4a1×q^6=a1 a1×q^3
令q^3=x
4x^-3x-1=0 x1=q^3=1 ∵q≠1 ∴舍去
x2=q^3=-1/4
S6=a1×(1-q^6)/(1-q)
S3=a1×(1-q^3)/(1-q)
S12=a1×(1-q^12)/(1-q)
S12-S6=a1×q^6×(1-q^6)/(1-q)
12S3×(S12-S6)
=(a1)^12×(1-q^6)×(1-q^3)×q^6/(1-q)^
=[(a1)^×(1-q^6))×(1-q^3)/(1-q)^]×q^6×12
=[(a1)^×(1-q^6)×(1-q^3)/(1-q)^]×(3/4)
(S6)^=(a1)^×(1-q^6)^)×(1-q^3)/(1-q)^
=[(a1)^×(1-q^6))×(1-q^3)/(1-q)^]×(1 q^3)
=[(a1)^×(1-q^6))×(1-q^3)/(1-q)^]×(3/4)
∴(S6)^=12S3×(S12-S6) 12S3,S6,S12-S6成等比数列
(2)
Tn=a1 2a4 3a7+... na(3n-2)
=a1 2a1q^3 3a1q^6 4a1q^9 ......na1q^(3n-3)
令q^3=k
Tn=a1 2a1k 3a1k^2 4a1k^3 ......na1k^(n-1)
k×Tn=a1k 2a1k^2 3a1k^3 4a1k^4 ......na1k^(n)
Tn-kTn=a1[1 k k^ k^3 k^4 ... k^n)
Tn=a×(1-k^n)/(1-k)^
其中k=q^3=-1/4
2013-10-16
展开全部
a1,a7,a4成等差数列
2a7=a1+a4
2a1q^6=a1+a1q^3
2q^6=1+q^3
2q^6-q^3-1=(2q^3+1)(q^3-1)=0
因为公比Q不等于1,
所以,q^3=-1/2,
2S3*(S12-S6)
=2a1(1-q^3)/(1-q)*[a1(1-q^12)/(1-q)-a1(1-q^6)/(1-q)]
=2a1(1+1/2)/(1-q)*[a1(1-1/16)/(1-q)-a1(1-1/4)/(1-q)]
=[a1/(1-q)]^2[3*(15/16-3/4)
=[a1/(1-q)]^2*9/16
=[a1*(3/4)/(1-q)]^2
=[a1*(1-1/4)/(1-q)]^2
=[a1*(1-q^6)/(1-q)]^2
=S6^2
2S3,S6,S12-S6等比
A(3n-2) = aq^(3n-3) = a(q^3)^(n-1) = a(-1/4)^(n-1)
T(n) = a + 2*a(-1/4) + 3*a(-1/4)^2 + ... + (n-1)*a(-1/4)^(n-2) + n*a(-1/4)^(n-1)
(-1/4)T(n) = 1*a(-1/4) + 2*a(-1/4)^2 + 3*a(-1/4)^3 + ... + (n-1)*a(-1/4)^(n-1) + n*a(-1/4)^n
T(n) - (-1/4)T(n) = a + a(-1/4) + a(-1/4)^2 + ... + a(-1/4)^(n-1) - n*a(-1/4)^n = a[1 - (-1/4)^n]/[1 - (-1/4)] - n*a(-1/4)^n
= 4a[1 - (-1/4)^n]/5 - na(-1/4)^n,
T(n) = {4a[1 - (-1/4)^n]/5 - na(-1/4)^n}*[1/(1+1/4)]
= {4a[1 - (-1/4)^n]/5 - na(-1/4)^n}*4/5
= 16a[1 - (-1/4)^n]/25 - 4na(-1/4)^n/5
2a7=a1+a4
2a1q^6=a1+a1q^3
2q^6=1+q^3
2q^6-q^3-1=(2q^3+1)(q^3-1)=0
因为公比Q不等于1,
所以,q^3=-1/2,
2S3*(S12-S6)
=2a1(1-q^3)/(1-q)*[a1(1-q^12)/(1-q)-a1(1-q^6)/(1-q)]
=2a1(1+1/2)/(1-q)*[a1(1-1/16)/(1-q)-a1(1-1/4)/(1-q)]
=[a1/(1-q)]^2[3*(15/16-3/4)
=[a1/(1-q)]^2*9/16
=[a1*(3/4)/(1-q)]^2
=[a1*(1-1/4)/(1-q)]^2
=[a1*(1-q^6)/(1-q)]^2
=S6^2
2S3,S6,S12-S6等比
A(3n-2) = aq^(3n-3) = a(q^3)^(n-1) = a(-1/4)^(n-1)
T(n) = a + 2*a(-1/4) + 3*a(-1/4)^2 + ... + (n-1)*a(-1/4)^(n-2) + n*a(-1/4)^(n-1)
(-1/4)T(n) = 1*a(-1/4) + 2*a(-1/4)^2 + 3*a(-1/4)^3 + ... + (n-1)*a(-1/4)^(n-1) + n*a(-1/4)^n
T(n) - (-1/4)T(n) = a + a(-1/4) + a(-1/4)^2 + ... + a(-1/4)^(n-1) - n*a(-1/4)^n = a[1 - (-1/4)^n]/[1 - (-1/4)] - n*a(-1/4)^n
= 4a[1 - (-1/4)^n]/5 - na(-1/4)^n,
T(n) = {4a[1 - (-1/4)^n]/5 - na(-1/4)^n}*[1/(1+1/4)]
= {4a[1 - (-1/4)^n]/5 - na(-1/4)^n}*4/5
= 16a[1 - (-1/4)^n]/25 - 4na(-1/4)^n/5
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询