怎么求一个函数的渐近线
设曲线 y=f(x) ,
如果 lim(x->+∞) [ f(x) - kx - b) = 0 或 lim(x->-∞) [ f(x) - kx - b) = 0
则 y=kx+b 是 曲线的斜渐近线。
求法:lim(x->+∞) f(x) / x = k, 且 lim(x->+∞) [ f(x) - kx] = b或 lim(x->-∞) f(x) / x = k, 且 lim(x->-∞) [ f(x) - kx] = b。
扩展资料:
渐近线分为垂直渐近线、水平渐近线和斜渐近线。
需要注意的是:并不是所有曲线都有渐近线,渐近线反映了某些曲线在无限延伸时的变化情况。
根据渐近线的位置,可将渐近线分为三类:水平渐近线、垂直渐近线、斜渐近线。
对于抛物线来说,如果当 时, ( 或者 ),而且 一般为间断点,就把 叫做的垂直渐近线;
如果当 时, ,就把 叫做的水平渐近线。例如,y = 3是曲线y = + 3的水平渐近线;
如果当 时, ,其中a和b为常数,那么 就是 的一条斜渐近线。
参考资料:渐近线(曲线的渐近线)_百度百科
求渐近线方法
一种是垂直渐近线:这种渐近线的形式为x=a,
也就是函数在x=a处的值为无穷大。所以求这种渐近线的时候只要找函数的特殊点,然后验证在该点的函数值是否为无穷大即可
另一种是斜渐近线:这种渐近线的形式为y=kx+b,
反映函数在无穷远点的性态。先求k,k=limf(x)/x,再求b,b=limf(x)-kx。极限过程都是x趋向于无穷大
渐近线是指:曲线上一点M沿曲线无限远离原点或无限接近间断点时,如果M到一条直线的距离无限趋近于零,那么这条直线称为这条曲线的渐近线。可分为垂直渐近线、水平渐近线和斜渐近线。
扩展资料:
当曲线上一点M沿曲线无限远离原点或无限接近间断点时,如果M到一条直线的距离无限趋近于零,那么这条直线称为这条曲线的渐近线。
渐近线分为垂直渐近线、水平渐近线和斜渐近线。
需要注意的是:并不是所有曲线都有渐近线,渐近线反映了某些曲线在无限延伸时的变化情况。
根据渐近线的位置,可将渐近线分为三类:水平渐近线、垂直渐近线、斜渐近线。
对于抛物线来说,如果当 时, ( 或 ),而且 一般为间断点,就把 叫做的垂直渐近线;
如果当 时, ,就把 叫做的水平渐近线。例如,y = 3是曲线y = + 3的水平渐近线;
如果当 时, ,其中a和b为常数,那么 就是 的一条斜渐近线。
结论:
1.与x^2/a^2-y^2/b^2=1渐近线相同的双曲线的方程,有无数条(且焦点可能在x轴或y轴上);
2.与x^2/a^2-y^2/b^2=1渐近线相同的双曲线可设为x^2/a^2-y^2/b^2=N,进行求解;
3.x^2/a^2-y^2/b^2=1的渐近线方程为 b/a*x=y;
4.x^2/b^2-y^2/a^2=1的渐近线方程为 a/b*x=y。
参考资料:百度百科-渐近线
求渐近线方法
一种是垂直渐近线:这种渐近线的形式为x=a,
也就是函数在x=a处的值为无穷大。所以求这种渐近线的时候只要找函数的特殊点,然后验证在该点的函数值是否为无穷大即可
另一种是斜渐近线:这种渐近线的形式为y=kx+b,
反映函数在无穷远点的性态。先求k,k=limf(x)/x,再求b,b=limf(x)-kx。极限过程都是x趋向于无穷大
渐近线是指:曲线上一点M沿曲线无限远离原点或无限接近间断点时,如果M到一条直线的距离无限趋近于零,那么这条直线称为这条曲线的渐近线。可分为垂直渐近线、水平渐近线和斜渐近线。
拓展资料:
求渐近线,可以依据以下结论:
双曲线两渐近线夹角一半的余弦等于c/a且2c为两焦点的距离,2a为轨迹上的点到焦点的距离差。
若极限 存在,且极限lim[f(x)-ax,x→∞]=b也存在,那么曲线y=f(x)具有渐近线y=ax+b。
解:(1)x = - 1为其垂直渐近线。
所以y = x - 1也是其渐近线。
参考资料:百度百科-渐近线
2013-10-18
分式型:y=k/x(k≠0),渐近线x=0, y=0;
y=k/(x+h) (k≠0), 渐近线 x=-h, y=0;
y=k/[(x+h)(x+i)], 渐近线 x=-h,x=-i y=0.
指数函数:y=a^x, 渐近线y=0.
对数函数:y=loga(x),渐近线x=0.
正切函数:y=tanx, 渐近线x=kπ+π/2, k∈Z.
余切函数:y=cotx, 渐近线x=kπ, k∈Z.
若函数平移,则渐近线也平移。
渐近线的本质是规范着曲线在无穷远处的走向。
求一般函数的渐近线,要用到极限的知识,而目前中学未学极限,到此为止。
2.一般的
若x→∞, limf(x)=常数a, 则曲线f(x)有一条水平渐近线y=a.
若x→b, limf(x)=∞,则曲线f(x)有一条垂直渐近线x=b.
若x→∞,lim[f(x)/x]=a≠0, 且lim[f(x)-ax]=b, 则曲线f(x)有一条斜渐近线y=ax+b.