一、反正切函数,高等数学的基本函数。arctan(1/2)=0.463648=26.5651度。
二、正切函数y=tan x在(-π/2,π/2)上的反函数,叫做反正切函数。记作arctanx,表示一个正切值为x的角,该角的范围在(-π/2,π/2)区间内。定义域R,值域(-π/2,π/2)
四、三角函数关系图
扩展资料
反三角函数(inverse trigonometric function)是一类初等函数。指三角函数的反函数。由于基本三角函数具有周期性,所以反三角函数是多值函数。这种多值的反三角函数包括:反正弦函数、反余弦函数、反正切函数、反余切函数、反正割函数、反余割函数,分别记为Arcsin x,Arccos x,Arctan x,Arccot x,Arcsec x,Arccsc x。
但是,在实函数中一般只研究单值函数,只把定义在包含锐角的单调区间上的基本三角函数的反函数,称为反三角函数,这是亦称反圆函数。为了得到单值对应的反三角函数,人们把全体实数分成许多区间,使每个区间内的每个有定义的 y 值都只能有惟一确定的 x 值与之对应。为了使单值的反三角函数所确定区间具有代表性,常遵循如下条件:
1、为了保证函数与自变量之间的单值对应,确定的区间必须具有单调性;
2、函数在这个区间最好是连续的(这里之所以说最好,是因为反正割和反余割函数是尖端的);
3、为了使研究方便,常要求所选择的区间包含0到π/2的角;
4、所确定的区间上的函数值域应与整函数的定义域相同。这样确定的反三角函数就是单值的,为了与上面多值的反三角函数相区别,在记法上常将Arc中的A改记为a,例如单值的反正弦函数记为arcsin x。
(参考资料 ——百度百科 反三角函数)
arctan(1/2)=0.463648=26.5651度。
arc是指三角函数的逆运算。如sin(30度)=1/2,那么,arcsin(1/2)=30度 。类似还有arcsin,arccos,arctan,arccot等。
Tan是正切的意思,角θ在任意直角三角形中,与θ相对应的对边与邻边的比值叫做角θ的正切值。若将θ放在直角坐标系中即tanθ=y/x。tanA=对边/邻边。在直角坐标系中相当于直线的斜率k。
n倍角公式:
tan(na)=sinna/cosna=∑(-1)(^i-1)/2×C(i)(n)×cos^n-i sin^i/∑(-1)^i/2×C(i)(n)×sin^n-i cos^i
ARC是数学中的一个基本符号,常写于等号“=”之后,代表等号后的函数为等号前函数的反函数。也常运用于物理运算和几何运算。
数学里arc是反三角函数的符号,适用于表达不特殊的角的大小,arc的作用就是表示这种不特殊的角,其中涉及增减性的问题。
反三角函数是一种基本初等函数。它并不能狭义的理解为三角函数的反函数,是个多值函数。它是反正弦arcsin x,反余弦arccos x,反正切arctan x,反余切arccot x这些函数的统称,各自表示其正弦、余弦、正切、余切为x的角。
扩展资料:
Arctangent(即arctan)指反正切函数,反正切函数是反三角函数的一种,即正切函数的反函数。一般大学高等数学中有涉及。
函数
的反函数,记作
叫做反正切函数。反正切函数是反三角函数的一种。
资料来源:百度百科-arctan
arctan(1/2)=0.463648=26.5651度
对于计算来说,可以通过作图的方式来查值,也可以直接用计算器进行计算。
arctan(1/2)是有定义的,arc是指三角函数的逆运算,只记住值,不要求手工计算,就像1+1=2一样,不要求进行证明的,科学计算器里直接将结果查出即可。
对于arc来说,举个例子:cos(60度)=1/2,那么,arccos(1/2)=30度
因此计算的是在多少度的情况下,tan值为二分之一,直接作图可以理解。
arctan(1/2)=ln(1+4)^(1/2)=0.463648
扩展如下:
首先:arc是指三角函数的逆运算
反三角函数是一种基本初等函数。它是反正弦arcsin x,反余弦arccos x,反正切arctan x,反余切arccot x,反正割arcsec x,反余割arccsc x这些函数的统称,各自表示其反正弦、反余弦、反正切、反余切 ,反正割,反余割为x的角。
它并不能狭义的理解为三角函数的反函数,是个多值函数。三角函数的反函数不是单值函数,因为它并不满足一个自变量对应一个函数值的要求,其图像与其原函数关于函数 y=x 对称。欧拉提出反三角函数的概念,并且首先使用了“arc+函数名”的形式表示反三角函数。
扩展资料:百度百科 反正切函数百度百科 反三角函数
arctan(1/2)=0.463648=26.5651度。
arc是指三角函数的逆运算,如sin(30度)=1/2,那么,arcsin(1/2)=30度。
反三角函数是一种基本初等函数。它是反正弦arcsin x,反余弦arccos x,反正切arctan x,反余切arccot x,反正割arcsec x,反余割arccsc x这些函数的统称,各自表示其反正弦、反余弦、反正切、反余切 ,反正割,反余割为x的角。
它并不能狭义的理解为三角函数的反函数,是个多值函数。三角函数的反函数不是单值函数,因为它并不满足一个自变量对应一个函数值的要求,其图像与其原函数关于函数 y=x 对称。欧拉提出反三角函数的概念,并且首先使用了“arc+函数名”的形式表示反三角函数。
扩展资料:
反三角函数(inverse trigonometric function)是一类初等函数。指三角函数的反函数。由于基本三角函数具有周期性,所以反三角函数是多值函数。这种多值的反三角函数包括:反正弦函数、反余弦函数、反正切函数、反余切函数、反正割函数、反余割函数,分别记为Arcsin x,Arccos x,Arctan x,Arccot x,Arcsec x,Arccsc x。
但是,在实函数中一般只研究单值函数,只把定义在包含锐角的单调区间上的基本三角函数的反函数,称为反三角函数,这是亦称反圆函数。为了得到单值对应的反三角函数,人们把全体实数分成许多区间,使每个区间内的每个有定义的 y 值都只能有惟一确定的 x 值与之对应。为了使单值的反三角函数所确定区间具有代表性,常遵循如下条件:
1、为了保证函数与自变量之间的单值对应,确定的区间必须具有单调性;
2、函数在这个区间最好是连续的(这里之所以说最好,是因为反正割和反余割函数是尖端的);
3、为了使研究方便,常要求所选择的区间包含0到π/2的角;
4、所确定的区间上的函数值域应与整函数的定义域相同。这样确定的反三角函数就是单值的,为了与上面多值的反三角函数相区别,在记法上常将Arc中的A改记为a,例如单值的反正弦函数记为arcsin x。
参考资料:
Arctangent(即arctan)指反正切函数,反正切函数是反三角函数的一种,即正切函数的反函数。一般大学高等数学中有涉及。
arctan(1/2)=0.463648=26.5651
如果要求:arctan(1/2),可以设tan(x)= 1/2,求x即可。
一般要求的是特殊角可以记下来,不是特殊角就要借助三角函数表或者计算器来帮助得到结果。
拓展资料:
反正切函数的值域为
计算性质
下面不加证明地给出若干性质。
参考资料:arctan--百度百科