求微分方程y″+y′-2y=e^-x和y″-2y′+2y=e^xcosx的通解 10
求y″+y′-2y=e^-x和y″-2y′+2y=e^xcosx的通解,要详细解答过程啊,谢谢了。。。...
求y″+y′-2y=e^-x和y″-2y′+2y=e^xcosx的通解,要详细解答过程啊,谢谢了。。。
展开
展开全部
y=C2*exp(x) - 1/(3*e^x*(log(e) + 1)) + 1/(3*e^x*(log(e) - 2)) + C3*exp(-2*x)
y=C5*exp(x)*cos(x) + C6*exp(x)*sin(x) + (cosx*e^x*cos(x)*(cos(x) + sin(x) - log(e)*sin(x)))/(log(e)^2 - 2*log(e) + 2) + (cosx*e^x*sin(x)*(sin(x) - cos(x) + log(e)*cos(x)))/(log(e)^2 - 2*log(e) + 2)通过拉普拉斯变换,然后再反变换
y=C5*exp(x)*cos(x) + C6*exp(x)*sin(x) + (cosx*e^x*cos(x)*(cos(x) + sin(x) - log(e)*sin(x)))/(log(e)^2 - 2*log(e) + 2) + (cosx*e^x*sin(x)*(sin(x) - cos(x) + log(e)*cos(x)))/(log(e)^2 - 2*log(e) + 2)通过拉普拉斯变换,然后再反变换
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询