已知函数f x=1-2a^x-a^2x(a>1)。求函数f x的值域;(2)若x∈[-2,1]时,函数f x的最小值为-7,求a的值

 我来答
小样儿1号
2013-10-19 · TA获得超过4.6万个赞
知道小有建树答主
回答量:6369
采纳率:98%
帮助的人:289万
展开全部
【解】(1)f(x)=2-(1+a^x)^2,
∵a^x>0,∴f(1)<2-1=1,
∴函数f(x)的值域为(-∞,1).
(2)∵a>1,∴当x∈〔-2,1〕时,a^2≤a^x≤a,
∴2-(a+1)^2≤f(x)≤2-(a^2+1)^2,
∴2-(a+1)^2=-7,得a=2.
此时,f(x)的最大值为2-(2^2+1)^2= 7/16.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式