在三角形中,sinA+根号2sinB=2sinC,则cosC的最小值
2个回答
展开全部
答:
三角形ABC中:
sinA+√2sinB=2sinC
根据正弦定理有:
a/sinA=b/sinB=c/sinC=2R
所以:
a+√2b=2c
两边平方:
a^2+2√2ab+2b^2=4c^2=4(a^2+b^2-2abcosC)
3a^2+2b^2-(8cosC)*ab-2√2ab=0
3a^2+2b^2=2(4cosC+√2)ab>=2*(√3a)*(√2b)=2√6(ab)
所以:4cosC+√2>=√6
所以:cosC>=(√6-√2)/4
所以:cosC的最小值为(√6-√2)/4
三角形ABC中:
sinA+√2sinB=2sinC
根据正弦定理有:
a/sinA=b/sinB=c/sinC=2R
所以:
a+√2b=2c
两边平方:
a^2+2√2ab+2b^2=4c^2=4(a^2+b^2-2abcosC)
3a^2+2b^2-(8cosC)*ab-2√2ab=0
3a^2+2b^2=2(4cosC+√2)ab>=2*(√3a)*(√2b)=2√6(ab)
所以:4cosC+√2>=√6
所以:cosC>=(√6-√2)/4
所以:cosC的最小值为(√6-√2)/4
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询