在三角形中,sinA+根号2sinB=2sinC,则cosC的最小值

yuyou403
2014-06-07 · TA获得超过6.4万个赞
知道顶级答主
回答量:2.2万
采纳率:95%
帮助的人:1亿
展开全部
答:
三角形ABC中:
sinA+√2sinB=2sinC
根据正弦定理有:
a/sinA=b/sinB=c/sinC=2R
所以:
a+√2b=2c
两边平方:
a^2+2√2ab+2b^2=4c^2=4(a^2+b^2-2abcosC)
3a^2+2b^2-(8cosC)*ab-2√2ab=0
3a^2+2b^2=2(4cosC+√2)ab>=2*(√3a)*(√2b)=2√6(ab)
所以:4cosC+√2>=√6
所以:cosC>=(√6-√2)/4
所以:cosC的最小值为(√6-√2)/4
钟馗降魔剑2
2014-06-07 · TA获得超过2.4万个赞
知道大有可为答主
回答量:1万
采纳率:74%
帮助的人:3916万
展开全部

本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式