3个回答
富港检测技术(东莞)有限公司_
2024-04-02 广告
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发...
点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
展开全部
一般解法
1.配方法
(可解全部一元二次方程)
如:解方程:x^2+2x-3=0
解:把常数项移项得:x^2+2x=3
等式两边同时加1(构成完全平方式)得:x^2+2x+1=4
因式分解得:(x+1)^2=4
解得:x1=-3,x2=1
用配方法解一元二次方程小口诀
二次系数化为一
常数要往右边移
一次系数一半方
两边加上最相当
2.公式法
(可解全部一元二次方程)
首先要通过Δ=b^2-4ac的根的判别式来判断一元二次方程有几个根
1.当Δ=b^2-4ac<0时 x无实数根(初中)
2.当Δ=b^2-4ac=0时 x有两个相同的实数根 即x1=x2
3.当Δ=b^2-4ac>0时 x有两个不相同的实数根
当判断完成后,若方程有根可根属于2、3两种情况方程有根则可根据公式:x={-b±√(b^2-4ac)}/2a
来求得方程的根
3.因式分解法
(可解部分一元二次方程)(因式分解法又分“提公因式法”、“公式法(又分“平方差公式”和“完全平方公式”两种)”和“十字相乘法”。
如:解方程:x^2+2x+1=0
解:利用完全平方公式因式分解得:(x+1﹚^2=0
解得:x1=x2=-1
4.直接开平方法
(可解部分一元二次方程)
5.代数法
(可解全部一元二次方程)
ax^2+bx+c=0
同时除以a,可变为x^2+bx/a+c/a=0
设:x=y-b/2
方程就变成:(y^2+b^2/4-by)+(by+b^2/2)+c=0 X错__应为 (y^2+b^2/4-by)除以(by-b^2/2)+c=0
再变成:y^2+(b^22*3)/4+c=0 X ___y^2-b^2/4+c=0
y=±√[(b^2*3)/4+c] X ____y=±√[(b^2)/4+c]
来自团队 新兰史海 希望对您有帮助!
1.配方法
(可解全部一元二次方程)
如:解方程:x^2+2x-3=0
解:把常数项移项得:x^2+2x=3
等式两边同时加1(构成完全平方式)得:x^2+2x+1=4
因式分解得:(x+1)^2=4
解得:x1=-3,x2=1
用配方法解一元二次方程小口诀
二次系数化为一
常数要往右边移
一次系数一半方
两边加上最相当
2.公式法
(可解全部一元二次方程)
首先要通过Δ=b^2-4ac的根的判别式来判断一元二次方程有几个根
1.当Δ=b^2-4ac<0时 x无实数根(初中)
2.当Δ=b^2-4ac=0时 x有两个相同的实数根 即x1=x2
3.当Δ=b^2-4ac>0时 x有两个不相同的实数根
当判断完成后,若方程有根可根属于2、3两种情况方程有根则可根据公式:x={-b±√(b^2-4ac)}/2a
来求得方程的根
3.因式分解法
(可解部分一元二次方程)(因式分解法又分“提公因式法”、“公式法(又分“平方差公式”和“完全平方公式”两种)”和“十字相乘法”。
如:解方程:x^2+2x+1=0
解:利用完全平方公式因式分解得:(x+1﹚^2=0
解得:x1=x2=-1
4.直接开平方法
(可解部分一元二次方程)
5.代数法
(可解全部一元二次方程)
ax^2+bx+c=0
同时除以a,可变为x^2+bx/a+c/a=0
设:x=y-b/2
方程就变成:(y^2+b^2/4-by)+(by+b^2/2)+c=0 X错__应为 (y^2+b^2/4-by)除以(by-b^2/2)+c=0
再变成:y^2+(b^22*3)/4+c=0 X ___y^2-b^2/4+c=0
y=±√[(b^2*3)/4+c] X ____y=±√[(b^2)/4+c]
来自团队 新兰史海 希望对您有帮助!
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
2x+y=2 ①
y=x-1②
代②入①
2x+x-1=2
3x=3
x=1
∴y=1-1=0
即:方程组的解为x=1;y=0
y=x-1②
代②入①
2x+x-1=2
3x=3
x=1
∴y=1-1=0
即:方程组的解为x=1;y=0
来自:求助得到的回答
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询