(2005?聊城)已知:平行四边形ABCD中,对角线AC、BD相交于点O,BD=2AD,E,F,G分别是OC,OD,AB的中点

(2005?聊城)已知:平行四边形ABCD中,对角线AC、BD相交于点O,BD=2AD,E,F,G分别是OC,OD,AB的中点.求证:(1)BE⊥AC;(2)EG=EF.... (2005?聊城)已知:平行四边形ABCD中,对角线AC、BD相交于点O,BD=2AD,E,F,G分别是OC,OD,AB的中点.求证:(1)BE⊥AC;(2)EG=EF. 展开
 我来答
star演奏9wF鰔
推荐于2016-06-16 · TA获得超过191个赞
知道答主
回答量:147
采纳率:0%
帮助的人:146万
展开全部
证明:(1)∵四边形ABCD是平行四边形,
∴AD=BC,BD=2BO.
由已知BD=2AD,
∴BO=BC.
又E是OC中点,
∴BE⊥AC.

(2)由(1)BE⊥AC,又G是AB中点,
∴EG是Rt△ABE斜边上的中线.
∴EG=
1
2
AB.
又∵EF是△OCD的中位线,
∴EF=
1
2
CD.
又AB=CD,
∴EG=EF.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式