如图,二次函数的图象与x轴相交于点A(-3,0)、B(-1,0),与y轴相交于点C(0,3),点P是该图象上的动
如图,二次函数的图象与x轴相交于点A(-3,0)、B(-1,0),与y轴相交于点C(0,3),点P是该图象上的动点;一次函数y=kx-4k(k≠0)的图象过点P交x轴于点...
如图,二次函数的图象与x轴相交于点A(-3,0)、B(-1,0),与y轴相交于点C(0,3),点P是该图象上的动点;一次函数y=kx-4k(k≠0)的图象过点P交x轴于点Q.(1)求该二次函数的解析式;(2)当点P的坐标为(-4,m)时,求证:∠OPC=∠AQC;(3)点M,N分别在线段AQ、CQ上,点M以每秒3个单位长度的速度从点A向点Q运动,同时,点N以每秒1个单位长度的速度从点C向点Q运动,当点M,N中有一点到达Q点时,两点同时停止运动,设运动时间为t秒.①连接AN,当△AMN的面积最大时,求t的值;②直线PQ能否垂直平分线段MN?若能,请求出此时点P的坐标;若不能,请说明你的理由.
展开
展开全部
(1)解:设抛物线的解析式为:y=a(x+3)(x+1),
∵抛物线经过点C(0,3),
∴3=a×3×1,解得a=1.
∴抛物线的解析式为:y=(x+3)(x+1)=x2+4x+3.
(2)证明:在抛物线解析式y=x2+4x+3中,当x=-4时,y=3,∴P(-4,3).
∵P(-4,3),C(0,3),
∴PC=4,PC∥x轴.
∵一次函数y=kx-4k(k≠0)的图象交x轴于点Q,当y=0时,x=4,
∴Q(4,0),OQ=4.
∴PC=OQ,又∵PC∥x轴,
∴四边形POQC是平行四边形,
∴∠OPC=∠AQC.
(3)解:①在Rt△COQ中,OC=3,OQ=4,由勾股定理得:CQ=5.
如答图1所示,过点N作ND⊥x轴于点D,则ND∥OC,
∴△QND∽△QCO,
∴
=
,即
=
,解得:ND=3-
t.
设S=S△AMN,则:
S=
AM?ND=
?3t?(3-
t)=-
(t-
)2+
.
又∵AQ=7,∴点M到达终点的时间为t=
,
∴S=-
(t-
)2+
(0<t≤
).
∵-
<0,
<
,且x<
时,y随x的增大而增大,
∴当t=
时,△AMN的面积最大.
②假设直线PQ能够垂直平分线段MN,则有QM=QN,且PQ⊥MN,PQ平分∠AQC.
由QM=QN,得:7-3t=5-t,解得t=1.
设P(x,x2+4x+3),
若直线PQ⊥MN,则:过P作直线PE⊥x轴,垂足为E,
则△PEQ∽△MDN,
∴
=
,
∴
=
∵抛物线经过点C(0,3),
∴3=a×3×1,解得a=1.
∴抛物线的解析式为:y=(x+3)(x+1)=x2+4x+3.
(2)证明:在抛物线解析式y=x2+4x+3中,当x=-4时,y=3,∴P(-4,3).
∵P(-4,3),C(0,3),
∴PC=4,PC∥x轴.
∵一次函数y=kx-4k(k≠0)的图象交x轴于点Q,当y=0时,x=4,
∴Q(4,0),OQ=4.
∴PC=OQ,又∵PC∥x轴,
∴四边形POQC是平行四边形,
∴∠OPC=∠AQC.
(3)解:①在Rt△COQ中,OC=3,OQ=4,由勾股定理得:CQ=5.
如答图1所示,过点N作ND⊥x轴于点D,则ND∥OC,
∴△QND∽△QCO,
∴
ND |
OC |
NQ |
CQ |
ND |
3 |
5?t |
5 |
3 |
5 |
设S=S△AMN,则:
S=
1 |
2 |
1 |
2 |
3 |
5 |
9 |
10 |
5 |
2 |
45 |
8 |
又∵AQ=7,∴点M到达终点的时间为t=
7 |
3 |
∴S=-
9 |
10 |
5 |
2 |
45 |
8 |
7 |
3 |
∵-
9 |
10 |
7 |
3 |
5 |
2 |
5 |
2 |
∴当t=
7 |
3 |
②假设直线PQ能够垂直平分线段MN,则有QM=QN,且PQ⊥MN,PQ平分∠AQC.
由QM=QN,得:7-3t=5-t,解得t=1.
设P(x,x2+4x+3),
若直线PQ⊥MN,则:过P作直线PE⊥x轴,垂足为E,
则△PEQ∽△MDN,
∴
PE |
EQ |
MD |
DN |
∴
x2+4x+3 |
4?x |
| ||
|
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
为你推荐:
下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载