已知数列{an}满足a1=1,an+1=2an+1,n∈N+

已知数列{an}满足a1=1,an+1=2an+1,n∈N+(1)求数列{na}的通项公式;(2)设bn=n(an+1),求数列{nb}的前n项和nS... 已知数列{an}满足a1=1,an+1=2an+1,n∈N+
(1)求数列{na}的通项公式;
(2)设bn=n(an+1),求数列{nb}的前n项和nS
展开
 我来答
Sam_Vampire
2015-07-06 · TA获得超过4905个赞
知道大有可为答主
回答量:1911
采纳率:87%
帮助的人:600万
展开全部
1)
∵a(n+1)=2an+1

两边同时除以2^(n+1),得
a(n+1)/2^(n+1)=an/2^n+1/2^(n+1)=an/2^n+(1/2)^(n+1)
记cn=an/2^n
则c(n+1)=cn+(1/2)^(n+1)
∴c(n+1)-cn=(1/2)^(n+1)
∴cn-c(n-1)=(1/2)^n
……
c3-c2=(1/2)^3
c2-c1=(1/2)^2
左右全部相加
cn-c1=(1/2)^2+(1/2)^3+……+(1/2)^n=1/4*(1-(1/2)^(n-1))/(1-1/2)=1/2*(1-(1/2)^(n-1))=1/2-(1/2)^n
∵c1=a1/2=1/2
∴cn=1/2-(1/2)^n+c1=1-(1/2)^n
∴an=cn*2^n=2^n-1
2)
bn=n(an+1)=n*(2^n-1+1)=n*2^n
……
b3=3*2^3
b2=2*2^2
b1=1*2^1
Sn=1*2^1+2*2^2+3*2^3+……+n*2^n
2Sn=1*2^2+2*2^3+3*2^4+……+n*2^(n+1)
Sn=2Sn-Sn=n*2^(n+1)-(2^1+2^2+2^3+……+2^n)
=n*2^(n+1)-2*(1-2^n)/(1-2)=n*2^(n+1)+2*(1-2^n)=n*2^(n+1)+2-2^(n+1)
=(n-1)*2^(n+1)+2为所求
1970TILI9
2015-11-30 · TA获得超过6375个赞
知道大有可为答主
回答量:1万
采纳率:60%
帮助的人:2344万
展开全部
a1=1,an+1=2an+1
a(n+1)+1=2[an+1]
[a(n+1)+1]/[an+1]=2
an+1=(a1+1)*2^(n-1)=(1+1)*2^(n-1)=2^n
an=2^n
所以,当n=1时,an=1
当n>=2时,an=2^n
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
827242296
2015-06-23 · TA获得超过274个赞
知道答主
回答量:93
采纳率:0%
帮助的人:35.2万
展开全部
an+1=2an+1,是什么意思
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式