任意矩形,菱形,正方形的中点四边形分别是什么形状?为什么

 我来答
XCX19911228
2019-10-14 · TA获得超过699个赞
知道答主
回答量:15
采纳率:0%
帮助的人:2377
展开全部

1、如果原四边形为矩形,则形成的中点四边形为菱形;

2、如果原四边形为菱形,则形成的中点四边形为矩形;

3、如果原四边形为正方形,则形成的中点四边形为正方形。

原因分析:在任意四边形中,作出2条对角线,则中位线中相对的两条与对应的中位线平行,且长度均为对角线的 12,所以任意四边形的各边中点连线组成的四边形中,对边相等且平行,由此可以证明中点四边形为平行四边形

1、原四边形为矩形,则其对角线长度相等,再根据上述的分析可知,中点四边形为平行四边形,所以此平行四边形的四条边相等,可以证明中点四边形为菱形;

2、原四边形为菱形,则其对角线互相垂直,再根据上述的分析可知,中点四边形为平行四边形,
所以此平行四边形的对边垂直,可以证明中点四边形为矩形;

3、原四边形为正方形,则其对角线互相垂直,且对角线长度相等,再根据上述原因分析可知,中点四边形为平行四边形,所以中点平行四边形的四条边相等且对边垂直,可以证明中点四边形为正方形。

扩展资料:

依次连接任意一个四边形各边中点所得的四边形叫做中点四边形。中点四边形的形状与原四边形的对角线的数量和位置关系有关。

注意:对于对角线互相垂直的四边形,连接各边中点所得的四边形一定是矩形。

矩形的判定方法:1.有一个角是直角的平行四边形是矩形 2.对角线相等的平行四边形是矩形 3.有三个角是直角的四边形是矩形。

小铃铛221
推荐于2018-04-13 · TA获得超过3.7万个赞
知道大有可为答主
回答量:7714
采纳率:82%
帮助的人:718万
展开全部
  分别是菱形,矩形,正方形。
  (一)、矩形的是菱形;
中点连线是平行于对角线的中位线,两条对角线不一定垂直,但对角线是相等的,所以是菱形。
(二)、正方形的是正方形
对角线相等,中位线也相等,对角线相互垂直,中位线也垂直,所以是正方形,
(三)、菱形的是矩形;
对角线垂直,中位线也互相垂直,对角线可能不相等,中位线也可能不相等,所以是矩形。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
111尚属首次
推荐于2017-11-27 · TA获得超过6.8万个赞
知道大有可为答主
回答量:1.1万
采纳率:91%
帮助的人:5354万
展开全部
您好

(一)、矩形的是菱形;
中点连线是平行于对角线的中位线,两条对角线不一定垂直,但对角线是相等的,所以是菱形.
(二)、正方形的是正方形
对角线相等,中位线也相等,对角线相互垂直,中位线也垂直,所以是正方形,
(三)、菱形的是矩形;
对角线垂直,中位线也互相垂直,对角线可能不相等,中位线也可能不相等,所以是矩形.
本回答被提问者和网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
太宰治fz
2019-08-04
知道答主
回答量:1
采纳率:0%
帮助的人:712
展开全部
1、矩形的是菱形;
中点连线是平行于对角线的中位线,两条对角线不一定垂直,但对角线是相等的,所以是菱形
2、正方形的是正方形
对角线相等,中位线也相等,对角线相互垂直,中位线也垂直,所以是正方形,
3、菱形的是矩形;
对角线垂直,中位线也互相垂直,对角线可能不相等,中位线也可能不相等,所以是矩形.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
sorrow547
2019-07-17
知道答主
回答量:1
采纳率:0%
帮助的人:719
展开全部
矩形的中点四边形是菱形,菱形的中点四边形是矩形,正方形的中点四边形是正方形。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(5)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式