SQL Server 优化存储过程的方法有哪些

 我来答
greystar_cn
2018-02-05 · 知道合伙人软件行家
greystar_cn
知道合伙人软件行家
采纳数:16407 获赞数:17260
本人主要从事.NET C#方向的技术开发工作,具有10多年的各类架构开发工作经验。

向TA提问 私信TA
展开全部
优化存储过程有很多种方法,下面介绍最常用的7种。
1.使用SET NOCOUNT ON选项
我们使用SELECT语句时,除了返回对应的结果集外,还会返回相应的影响行数。使用SET NOCOUNT ON后,除了数据集就不会返回额外的信息了,减小网络流量。
2.使用确定的Schema
在使用表,存储过程,函数等等时,最好加上确定的Schema。这样可以使SQL Server直接找到对应目标,避免去计划缓存中搜索。而且搜索会导致编译锁定,最终影响性能。比如select * from dbo.TestTable比select * from TestTable要好。from TestTable会在当前Schema下搜索,如果没有,再去dbo下面搜索,影响性能。而且如果你的表是csdn.TestTable的话,那么select * from TestTable会直接报找不到表的错误。所以写上具体的Schema也是一个好习惯。
3.自定义存储过程不要以sp_开头
因为以sp_开头的存储过程默认为系统存储过程,所以首先会去master库中找,然后在当前数据库找。建议使用USP_或者其他标识开头。
4.使用sp_executesql替代exec
原因在Inside Microsoft SQL Server 2005 T-SQL Programming书中的第四章Dynamic SQL里面有具体描述。这里只是简单说明一下:sp_executesql可以使用参数化,从而可以重用执行计划。exec就是纯拼SQL语句。
5.少使用游标
可以参考Inside Microsoft SQL Server 2005 T-SQL Programming书中的第三章Cursors里面有具体描述。总体来说,SQL是个集合语言,对于集合运算具有较高的性能,而Cursors是过程运算。比如对一个100万行的数据进行查询,游标需要读表100万次,而不使用游标只需要少量几次读取。
6.事务越短越好
SQL Server支持并发操作。如果事务过多过长,或是隔离级别过高,都会造成并发操作的阻塞,死锁。此时现象是查询极慢,同时cup占用率极低。
7.使用try-catch来处理错误异常
SQL Server 2005及以上版本提供对try-catch的支持,语法为:
begin try
----your code
end try
begin catch
--error dispose
end catch
一般情况可以将try-catch同事务结合在一起使用。
begin try
begin tran
--select
--update
--delete
--…………
commit
end try
begin catch
--if error
rollback
end catch
====================== 分割线 =======================

『自己的一些调优经验』
1. 少使用游标是个很好的建议,为此,我自己也遇到过一些事故,是游标所造成的,由于,游标是逐行逐行操作的,当记录较多时,经常会遇到超时的情况。
2. 多表join做查询时,查询的字段尽量不要使用case when then else end的语法,或者使用用户函数,例如:
select (case when fType=1 then '是' else '否' end) as fTypeName, dbo.F_GetFullName(fID) as fFullName from Table1 inner join Table2……
当两个表的数据量非常大时,你可以在查询分析器中明显感觉到:直接查询fType和fID与查询上面两个字段的速度,很可能使用了一个case when then就导致超时。
针对这种情况,可以分两种做法:
第一,把一些简单的转换可以放在程序中完成。
第二,如果需要通过ID查询全名或者全称,类似的,可以创建好视图,直接查视图,或者,先把所有的fFullName查出来放到临时表中,直接join临时表(如果这个数据不是很多的话),获得fFullName。
3. 少使用一些嵌套的查询,用临时表缓存中间数据,例如:
select * from Table1
inner join (
select count(1) as count, Table2.ID2 from Table2 inner join Table3 on ID2=ID3 group by Table2.ID2

) as t1 on t1.ID1 = Table1.ID1

我曾经遇到这样情况,上面的语句是那种情况的简化版本,把其他不影响结果的表格都去掉了,发现一个奇怪的现象:嵌套查询的结果集并不大,大约就200多行,Table1有6w条记录,结果,这个查询语句超时,查询分析器中执行2分钟也得不到结果。
后来,这样一改,就Ok了,3秒出结果:
select count(1) as count, Table2.ID2 into #temp from Table2 inner join Table3 on ID2=ID3 group by Table2.ID2
select * from Table1
inner join #temp as t1 on t1.ID1 = Table1.ID1
这样一改,效率提升了几十倍,猜想:可能是嵌套的查询是动态的,每一行的join可能都需要先执行嵌套的查询,从而导致效率极差。
所以,如果查询足够复杂,join多个表,需要连接多个通过group by求和、求平均数等运算计算出来的中间数据,那么,不妨多使用临时表缓存中间数据。
4. 还有一些是必须遵守的一些默认规则,比如:

先过滤后连接。
查询的字段最要不要用“*”,指定需要用的字段,减少网络流量。

『总结』
对于性能的追求是没有极限的,做到你所能做到的,这是一个很好的习惯。
有些业务逻辑放在存储过程中处理比较方便,而有些业务逻辑交给程序来处理,同样会提升系统整体的效率,看实际情况而定。
总之,尽可能减少这些容易引发性能问题的隐患,系统就会跑得更稳定更有效率,一切从小细节做起。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式