1.和2。过程与答案。详细的必采纳。
2014-11-04
展开全部
解:(1)①∵5+2=7,
∴左边的三位数是275,右边的三位数是572,
∴52×275=572×25;
②∵左边的三位数是396,
∴左边的两位数是63,右边的两位数是36,
∴63×369=693×36;
故答案为:①275,572;②63,36;
(2)∵左边两位数的十位数字为a,个位数字为b,
∴左边的两位数是10a+b,三位数是100b+10(a+b)+a,
右边的两位数是10b+a,三位数是100a+10(a+b)+b,
∴一般规律的式子为:(10a+b)×[100b+10(a+b)+a]=[100a+10(a+b)+b]×(10b+a),
证明:左边=(10a+b)×[100b+10(a+b)+a]
=(10a+b)(100b+10a+10b+a)
=(10a+b)(110b+11a)
=11(10a+b)(10b+a),
右边=[100a+10(a+b)+b]×(10b+a)
=(100a+10a+10b+b)(10b+a)
=(110a+11b)(10b+a)
=11(10a+b)(10b+a),
左边=右边,
所以“数字对称等式”一般规律的式子为:
(10a+b)×[100b+10(a+b)+a]=[100a+10(a+b)+b] ×(10b+a).
∴左边的三位数是275,右边的三位数是572,
∴52×275=572×25;
②∵左边的三位数是396,
∴左边的两位数是63,右边的两位数是36,
∴63×369=693×36;
故答案为:①275,572;②63,36;
(2)∵左边两位数的十位数字为a,个位数字为b,
∴左边的两位数是10a+b,三位数是100b+10(a+b)+a,
右边的两位数是10b+a,三位数是100a+10(a+b)+b,
∴一般规律的式子为:(10a+b)×[100b+10(a+b)+a]=[100a+10(a+b)+b]×(10b+a),
证明:左边=(10a+b)×[100b+10(a+b)+a]
=(10a+b)(100b+10a+10b+a)
=(10a+b)(110b+11a)
=11(10a+b)(10b+a),
右边=[100a+10(a+b)+b]×(10b+a)
=(100a+10a+10b+b)(10b+a)
=(110a+11b)(10b+a)
=11(10a+b)(10b+a),
左边=右边,
所以“数字对称等式”一般规律的式子为:
(10a+b)×[100b+10(a+b)+a]=[100a+10(a+b)+b] ×(10b+a).
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询