
已知数列{an}满足a1=12,且an+1=an3an+1(n∈N+).(1)证明数列{1an}是等差数列,并求数列{an}的通项公
已知数列{an}满足a1=12,且an+1=an3an+1(n∈N+).(1)证明数列{1an}是等差数列,并求数列{an}的通项公式;(2)设bn=anan+1(n∈N...
已知数列{an}满足a1=12,且an+1=an3an+1(n∈N+).(1)证明数列{1an}是等差数列,并求数列{an}的通项公式;(2)设bn=anan+1(n∈N+),数列{bn}的前n项和记为Tn,证明:Tn<16.
展开
1个回答
展开全部
(1)证明:∵数列{an}满足a1=
,且an+1=
(n∈N+),
∴
=
=
+3,
∴
?
=3,又
=2,
∴{
}是首项为2,公差为3的等差数列.
∴
=2+(n-1)×3=3n-1,
∴an=
.
(2)bn=anan+1=
=
(
?
),
∴Tn=
(
?
+
?
+…+
?
)
=
(
?
)
=
?
<
.
∴Tn<
.
1 |
2 |
an |
3an+1 |
∴
1 |
an+1 |
3an+1 |
an |
1 |
an |
∴
1 |
an+1 |
1 |
an |
1 |
a1 |
∴{
1 |
an |
∴
1 |
an |
∴an=
1 |
3n?1 |
(2)bn=anan+1=
1 |
(3n?1)(3n+2) |
1 |
3 |
1 |
3n?1 |
1 |
3n+2 |
∴Tn=
1 |
3 |
1 |
2 |
1 |
5 |
1 |
5 |
1 |
8 |
1 |
3n?1 |
1 |
3n+2 |
=
1 |
3 |
1 |
2 |
1 |
3n+2 |
=
1 |
6 |
1 |
3(3n+2) |
1 |
6 |
∴Tn<
1 |
6 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询