生活中由平面图形旋转而得的几何体有哪些?
生活中可以由平面图形旋转而得的几何体有:圆柱体、球体、圆锥体、圆台、椭圆体。
1、圆柱体——长方形或正方形旋转而得
一个长方形以一边为轴顺时针或逆时针旋转一周,所经过的空间形成圆柱体。
圆柱体也可以通过平移定义法形成,即:以一个圆为底面,上或下移动一定的距离,所经过的空间形成圆柱体。
2、球体——圆旋转而得
一个任意圆以它的直径为旋转轴,旋转所成的几何体即为球体。球体也可以是由一个半圆以它的直径为旋转轴,旋转形成。
3、正圆锥体——直角三角形旋转而得
正圆锥是一个直角三角形绕其培猛扰中一条直角边旋转一周得到的几何体,这个直角三角形的斜边为圆锥的母线。顶点在底面的投影不在圆心,这样的圆锥为斜圆锥。正圆锥可以由平面截圆锥面得到,斜圆锥则不能。倾斜平面截取圆锥面得到的几何形体叫做椭圆锥。
4、圆台——直角梯形旋转而得
圆台配旦是以直角梯形垂直于底边的腰所在直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体。
也可以用一个平行于圆锥底面的平面去截圆锥,底面与截面之间的部分为圆台。
5、椭圆体——椭圆旋转而得
椭圆围绕它的长轴或短轴旋转一周所围成的立体。比如橄榄球。
扩展资料:
一、旋转特征
1、对应点到旋转中心的距离相等。
2、对应点与旋转中心所连线段的夹角等于旋转角。
3、旋转前、后的图形全等,即旋转前后图形的大小和形状没有改变。
4、旋转中心是唯一不动的点。
5、一组对应点的连线所在的直线所交的角等于旋转角度。
二、点的对称变换
(1)关于原点对称的点的特征
两个点关于原点对称时,它们的坐标的符号相反,即点P(x,y)关于原点的对称点为P'(-x,-y)
(2)关于x轴对称的点的特征。
两个点关于x轴对称时,它们的坐标中,x相等,y的符号相反,即点P(x,y)关于x轴的对称点为P'(x,-y)
(3)关于y轴对称的点的特征
两个点关于y轴对称时,它们的坐标中,y相等,x的符号相反,即点P(x,y)关于y轴的对称点为P'(-x,y)
(4)关于直线y=x对称
两个点关于直线y=x对称时,横坐标与纵坐标与之前对换,即P(x,y)关于直线 y=x的对称点为P'(y,x)
(5)两个点关于直线y=-x对称时,横坐标与纵坐标与之前相反,即P(x,y)关于直线y=x的对称点为P'(-y,-x)
注:y=x的直线是过一三象限的角平分线,y=-x的直线是过二四知猛象限的角平分线。
参考资料来源:百度百科-旋转
2024-11-28 广告