矩阵的三种初等变换是什么
展开全部
第一种:交换矩阵的两行(对调i,j,两行记为ri,rj);
第二种: 以一个非零数k乘矩阵的某一行所有元素(第i行乘以k记为ri×k);
第三种:把矩阵的某一行所有元素乘以一个数k后加到另一行对应的元素(第j行乘以k加到第i行记为ri+krj)。
这三种初等变换都不会改变一个方阵A的行列式的非零性,所以如果一个矩阵是方阵,我们可以通过看初等变换后的矩阵是否可逆,来判断原矩阵是否可逆。
可以看出,矩阵的3种初等变换都是可逆的,且其逆变换也是同一种类型的初等变换。
扩展资料
初等矩阵性质:
1、设A是一个m×n矩阵,对A施行一次初等行变换,其结果等价于在A的左边乘以相应的m阶初等矩阵;对A施行一次初等列变换,其结果等价于在A的右边乘以相应的n阶初等矩阵。反之亦然。
2、方阵A可逆的充分必要条件是存在有限个初等矩阵P1,P2,......Pn,使得P1P2...Pn.
3、m×n矩阵A与B等价当且仅当存在m阶可逆矩阵P与n阶可逆矩阵Q使得B=PAQ。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询