根号下(x^2-4)/x dx的不定积分 求详细解答过程

根号下(x^2-4)/xdx的不定积分求详细解答过程... 根号下(x^2-4)/x dx的不定积分

求详细解答过程
展开
 我来答
教育小百科达人
2019-05-03 · TA获得超过156万个赞
知道大有可为答主
回答量:8828
采纳率:99%
帮助的人:464万
展开全部

令x=2sect,

则dx=2sect·tantdt

原式=∫(2tant)/(2sect)·2sect·tantdt

=∫2tan²tdt

=2∫(sec²t-1)dt

=2(tant-t)+C

=2√(x²-4)-2arccos(2/x)+C

连续函数,一定存在定积分和不定积分;若在有限区间[a,b]上只有有限个间断点且函数有界,则定积分存在;若有跳跃、可去、无穷间断点,则原函数一定不存在,即不定积分一定不存在。

扩展资料:

求函数f(x)的不定积分,就是要求出f(x)的所有的原函数,由原函数的性质可知,只要求出函数f(x)的一个原函数,再加上任意的常数C就得到函数f(x)的不定积分。

在某些积分的定义下这些函数不可积分,但在另一些定义之下它们的积分存在。然而有时也会因为教学的原因造成定义上的差别。最常见的积分定义是黎曼积分和勒贝格积分

对于一个函数f,如果在闭区间[a,b]上,无论怎样进行取样分割,只要它的子区间长度最大值足够小,函数f的黎曼和都会趋向于一个确定的值S,那么f在闭区间[a,b]上的黎曼积分存在,并且定义为黎曼和的极限S。

参考资料来源:百度百科——不定积分

尹六六老师
推荐于2017-11-29 · 知道合伙人教育行家
尹六六老师
知道合伙人教育行家
采纳数:33774 获赞数:147231
百强高中数学竞赛教练, 大学教案评比第一名, 最受学生欢迎教

向TA提问 私信TA
展开全部
令x=2sect,
则dx=2sect·tantdt
原式=∫(2tant)/(2sect)·2sect·tantdt
=∫2tan²tdt
=2∫(sec²t-1)dt
=2(tant-t)+C
=2√(x²-4)-2arccos(2/x)+C
本回答被提问者和网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
榮耀存於心
2021-08-11 · 超过11用户采纳过TA的回答
知道答主
回答量:56
采纳率:100%
帮助的人:9.3万
展开全部
令x=2sect
原式=∫ 2tant^2 dt=∫ 2sect^2-2 dt=2tant-2t+c=√(x²-4)-2arctan(√(x^2-4)/2)+c 或者√(x²-4)-2arccos(2/x)+c
注:tanx^2=sec^2-1。因为x=2sect 所以tant=√(x²-4)/2,cost=2/x
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
遇子凉
2017-12-26
知道答主
回答量:2
采纳率:0%
帮助的人:1139
引用yq_whut的回答:
令x=2sect,
则dx=2sect·tantdt
原式=∫(2tant)/(2sect)·2sect·tantdt
=∫2tan²tdt
=2∫(sec²t-1)dt
=2(tant-t)+C
=2√(x²-4)-2arccos(2/x)+C
展开全部
应该讨论x>2还是x<-2吧
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
百度网友18c90de
2017-11-28
知道答主
回答量:1
采纳率:0%
帮助的人:918
展开全部
√(x^2-4)-arccox2/X+c
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 2条折叠回答
收起 更多回答(3)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式