设字长为N+1位(含1位符位),补码的表示范围为( )
2个回答
展开全部
设字长为N+1位(含1位符位),补码的表示范围为0≤|N|≤2n-1。
)补码表示统一了符号位和数值位,使得符号位可以和数值位一起直接参与运算,这也为后面设计乘法器除法器等运算器件提供了极大的方便。
总之,补码概念的引入和当时运算器设计的背景不无关系,从设计者角度,既要考虑表示的数的类型(小数、整数、实数和复数)、数值范围和精确度,又要考虑数据存储和处理所需要的硬件代价。因此,使用补码来表示机器数并得到广泛的应用,也就不难理解了。
扩展资料:
8位二进制表示的范围:
一个字节8位,如果采用原码表示正整数(含0),可以表达0-255,即 2^8=256,一共256种状态,从全0到全1的各种排列组合。
如果要表示负数,则符号位需要占用一位(最高位,1代表负数,0代表正数),因此其绝对值最大范围为0-127,即2^7=128,一共正负各128种状态;
如果不采用特殊处理,这时候0占用2个编码(10000000和00000000),数据表示范围为-127到-0及+0到127,这样总体上一个字节只有255种状态,因为其中0具有正0和负0之分,这不符合数学意义也浪费一个编码。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询