概率中的C和P有啥区别?
1个回答
展开全部
排列组合计算方法如下:排列也可以表示成P
排列A(n,m)=n×(n-1).(n-m+1)=n!/(n-m)!(n为下标,m为上标,以下同)
组合C(n,m)=P(n,m)/P(m,m) =n!/m!(n-m)!;
例如:
A(4,2)=4!/2!=4*3=12
C(4,2)=4!/(2!*2!)=4*3/(2*1)=6
概率中的C和P区别:
1、表示不同
C表示组合方法,比如有3个人甲乙丙,抽出2个人去参加活动的方法有C(3,2)=3种,分别是甲乙、甲丙、乙丙,这个不具有顺序性,只有组合的方法。
P表示排列方法,表示一些物体按顺序排列起来,总共的方法是多少。
2、性质不同
公式P是指排列,从N个元素取R个进行排列(即排序)。
公式C是指组合,从N个元素取R个,不进行排列(即不排序)。
扩展资料
排列组合的难点:
1、从千差万别的实际问题中抽象出几种特定的数学模型,需要较强的抽象思维能力;
2、限制条件有时比较隐晦,需要我们对问题中的关键性词(特别是逻辑关联词和量词)准确理解;
3、计算手段简单,与旧知识联系少,但选择正确合理的计算方案时需要的思维量较大;
4、计算方案是否正确,往往不可用直观方法来检验,要求我们搞清概念、原理,并具有较强的分析能力。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询