∞的极限是什么?
1个回答
展开全部
n次方的极限为1/e,这是利用了一个重要极限=[1-1/(n+1)]^[-(n+1)*(-n)/(n+1)];=e^(-1)。当n->∞时,lim (1+1/n)^n=e。
故lim (n/(n+1))^n=lim 1/(1+1/n)^n=1/e,主要是利用了n=1/(1/n)这个小技巧,故n/(n+1)=1/(n+1)/n)=1/(1+1/n)。
无限符号的等式
在数学中,有两个偶尔会用到的无限符号的等式,即:∞=∞+1,∞=∞×1。
某一正数值表示无限大的一种公式,没有具体数字,但是正无穷表示比任何一个数字都大的数值。 符号为+∞,同理负无穷的符号是-∞。
莫比乌斯带常被认为是无穷大符号“∞”的创意来源,因为如果某个人站在一个巨大的莫比乌斯带的表面上沿着他能看到的“路”一直走下去,他就永远不会停下来。但是这是一个不真实的传闻,因为“∞”的发明比莫比乌斯带还要早。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询